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1.0 INTRODUCTION

In the first Annual Technical Report (March 1, 1981-February 28, 1982),

the principal elements of the full wave approach and its relationship to

earlier solutions of scattering problems were summarized.

It was shown that the stationary phase approximation of the full wave

solution is precisely equal to the physical optics solution for scattering

by rough surfaces. Thus if the principal contributions to the scattered

fields come from the regions around specular points of the rough surface,

at high frequencies, k2<h 2> > > 1, (k -electromagnetic wave number, <h2>
0 0

-mean square height), the physical optics approximations are valid. On9'
the other hand if the principal contributions to the scattered fields do

not come from specular points of the rough surface, the physical optics

solutions are not valid even if the surface meets the radii of curvature

criteria associated with the Kirchhoff approximations for the surface fields.

Similarly it was shown that if the scale of the surface roughness is

small (k2<h2> << 1) and the slopes of the rough surface are small, the full
0

wave solutions reduce precisely to the perturbation solution for the

scattered fields (Rice, 1951).

Thus the full wave solutions which account for both specular point

scattering as well as Bragg scattering in a uniform self-consistent manner

resolve the apparent discrepancies between the physical optics and

4perturbation theories.

In an attempt to account for the fact that at near normal incidence

the backscattered fields are primarily due to specular point scattering

while the backscattered fields near grazing incidence are primarily due to

Bragg scattering, a two-scale model "mostly based on physical considerations"

was advanced (Wright, 1968; Valenzuela, 1968). These composite models are

4 "
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able to explain features in radar cross section that no theory can. More

recently Brown (1978) used a combination of Burrows' perturbation theory

and physical optics to show that the scattering cross sections for rough

surfaces can be expressed as a sum of two cross sections; one associated

with the filtered surface consisting of the large scale spectral components

of the surface and the second associated with the surface consisting of

the small scale spectral components. The results of Valenzuela (based

on physical considerations) and those of Brown (based on a perturbed

physical optics approach) are in agreement provided that the mean square

slope of the rough surface is small.

On applying the full wave approach to the two-scale model of the

composite surface it was shown that the scattering cross sections can be

expressed as a weighted sum of two cross sections. It was also shown that

the difference between Valenzuela's solution and Brown's solution for the

d scattering cross sections is primarily due to the fact that in Valenzuela's

work the small scale surface height is measured perpendicular to the

large scale surface and that the correlation distance for the small scale

surface depends on distances measured along the large scale surface.

On the other hand in Brown's work the small scale surface height is

measured perpendicular to the mean, reference surface and the correlation

distance is measured in the mean reference plane. This is contrary to

*Burrows' perturbation formulation upon which Brown's analysis is based.

A problem which is directly associated with the two-scale model of

the composite rough surface concerns the specification of the wavenumber kd

where spectral splitting between the large and small scale surfaces is

assumed to occur (Brown, 1978). Using Brown's approach kd is specified

4
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on the basis of the features of the small scale surface h ; namelyS

4k2<h 2>. It is shown that Brown's results for the scattering cross
0 s

sections critically depend on the value chosen for $. Since, using Brown's

theory, the small scale surface must satisfy the perturbation criteria,

Brown suggests that kd should be chosen subject to the condition a = 0.1.

On the other hand Hagfors (1966) and Tyler (1976) suggest that for near normal

incidence the specification of kd should be based on the characteristics

of the large scale surface since the large scale surface must satisfy the

* radii of curvature criteria associated with the Kirchhoff approximations

of the surface fields.

* In addition to the above problems associated with the specification

of kd, it should be noted that the two-scale model of the composite

surface is restricted by the assumption that the large and small surface

heights h and hs are statistically independent (Brown, 1978). In order

to examine the earlier results based on the two-scale models of composite

surfaces the. full wave approach (which accounts for both specular point9.

scattering as well as Bragg scattering in a uniform self-consistent manner)

is also applied to the two-scale model. Thus in Sections 2 and 3 of this

report the composite surface is decomposed into a large and small scale

surface. However, the value of 8 (which directly specifies kd) is allowed

to vary from 0.1 to 2.0 since use of the full wave approach imposes no

. restriction on the specification of kd. Thus assuming that the surface

height spectral density function (or its Fourier transform the surface

height autocorrelation function) is known, the value of kd (where spectral

splitting is assumed to occur) is determined by its relationship to

•A
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8 " 4k2<h> (see Section 3). The portion of the spectral density function
0 S

W(k) corresponding to the filtered large scale surface hF (k < kd) is

used to determine the mean square slope of the large scale surface hF.

This in turn determines the probability density function for the large

scale surface slopes since the random surface height is assumed to comprise

a superposition of a sufficiently large number of zero mean independent

component heights such that the surface height and all of its derivatives

are Gaussian (Brown 1978). Thus all the data needed to compute the

scattering cross sections (based on the two-scale model) can be obtained

from the surface height spectral density function or the corresponding

surface height autocorrelation function (see Sections 2 and 3). It is

shown that for values of 8 between one and two the scattering cross

sections based on the full wave solutions are practically insensitive to

variations in k d . For these values of 8 the filtered surface h. satisfies

the radii of curvature criteria as well as the criteria for deep phase

modulation (see Sections 2 and 3). However, the perturbed-physical optics

approach cannot be used for 8 > 0.1 (Brown, 1978).

In Section 4 the full wave approach is used to determine the scattering

cross sections without assuming the two-scale model of the surface. Thus

in this case the problems associated with the specifications of kd do not

arise and it is not necessary to assume that the large and small scale

surfaces are statistically independent (Brown, 1978). Thus using the full

wave approach specular point scattering and Bragg scattering are not

artificially separated out in the expressions for the scattering cross

sections.
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It is shown in Section 4 that while the values for the like polarized

backscatter cross sections (<a W>and <a HH>)obtained from the unified and two

scale versions of the full wave solutions are in substantial agreement for

*all angles of incidence, there are vary significant differences between the

values of the cross polarized backscatter cross sections obtained from the

unified and two-scale models of the rough surface. This is shown to be

primarily because the physical optics solutions for the cross-polarized back-

scatter cross sections (associated with the filtered surface hF) vanish (see

Section 4). However, as is shown through the use of the unified full wave

approach, only at the specular points of the rough surface is there

depolarization of the backscattered fields. Thus no matter how one chooses

kd (the wavenumber where spectral splitting is assumed to occur) a two

scale model based on a perturbed-physical optics approach should not be

used to determine the cross polarized scattering cross sections.

For the convenience of the reader of this report, all the principal
.

anal) .±cal results leading to full wave expressions for the normalized

cross sections are presented in Section (1.1). Thus, starting with Maxwell's

.4 equations for the transverse components of the electromagnetic fields, the

boundary conditions, the expressions for the complete field expansions and

*the associated orthogonal relations, the generalized telegraphists equa-

S. tions are derived. It is shown how these coupled equations are solved

* using a second order iterative approach and the judicious use of a local

coordinate system that conforms with features of the rough surface. Expli-

cit expressions for the scattered radiation fields and the like and cross

polarized scattering cross sections are also presented in this section.

S,

4.
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Thus the reader finds in this section a convenient review of all the back-

ground material that leads up to the general full wave expressions for the

scattering cross sections.

In Section(1.2)the technical reports and publications resulting from

this Air Force Contract are listed. In Section 5 a summary of the pro-

posed research for the next six months is presented and suggestions for

future investigations are also listed.

.

,.
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1.1 Summary of Research

In this section the principal steps leading to the derivation of

the full wave solutions for the scattering cross sections for random

rough surfaces are summarized. The complex electromagnetic parameters

of the media above and below the irregular boundary y = h(x) are (see

Fig. 1.1

ia cop y> h(x) W

R R y y < h(x) (1

in which ER, El, and the conductivity a are real and an exp(iwt) time

dependence is assumed.

In this work it is assumed that the complex permittivity e and

permeability p are not functions of x. Thus wave scattering is only due

to the irregular boundary between the two half spaces y > h(x) (medium 0)

and y < h(x) (medium 1). Since it is convenient to represent electric

current loops by magnetic dipoles, both electric and magnetic sources J

and R are assumed to be present. Maxwell's equations for the transverse

electric and magnetic fields, ET and HT respectively, are (Bahar 1973a,b)
3E TT

x -- iwz(IL x a) -V V (H x a x)ax 1wiI x iWC T T T x

+ MT x ax + V T x  (1.2)

and

-= iwe(a x ET) i- V (ax
* x x T i~jiT T x T)

+ a xJ + yi VTM (1.3)
x T iwj T x

J in which the operator VT is given by

V - -
VT ay a z (1.4)ay az

• o , . '% " , , . - S . % " % , ° . . . .- -, .. ** %' . % ° . -, 5 5 5 5 , . - , .
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and the transverse vectors are

X a A +aA, A=E,H,JorM (1.5)y y z z

The following field transform pairs provide the basis for the complete

expansion of the transverse electric and magnetic fields into vertically

and horizontally polarized waves:
.r' V -u

ET(xy,z) fv- [E (x,v,w)er + E H(x,v,w)eH]dw, (1.6)

where P~ -T 0

EP(x,v,w) - £: (x,y,z). (. -a)dydz, P=V or H, (1.7)
T ~ Tr

H(yz)=v -LnH x~v,w~hT + HHx,v,w) ,~jw,(1.8)

where
P -T
H (x,v,w) = f E (x,y,z)-(a x x ep)dydz, P=V or H, (1.9)

The basis functions for the vertically polarized waves are

aFVT = Z( V(x z ip(v'Y) )K(w,z) (1.10)

eu +w

o and H (XVW -i aiV(v,y),(w,z) P1.o1H

i and the complementary basis functions for the vertically polarized waves

are a iw V

-V V-Vz cvX

-T =V 2(a Y (v )y ) + 2 2 ay 2wz) (1.12)

u + w

and

• - zV V (1134. a i (v,y)c(w,z)
For the horizontally polarized waves, the basis functions and the complementary

. basis functions are respectively

eT Z (v y) (w,z) , (1.14)

For the hrznal p z w s te b

basis functions are respectively

,,.-.-,,-..v.v ,,..',' '> .. , ,' -.- H- ,v -.;,H .,-..< ." ,'.:.".-. . .'...'. ,..;':,'. '.-'.,.," ' ''-



10

K.a -H H -iw H
h= Y ( a H (v, ) + z av(v 0 (wZ) (1.15)I n T Y u 2 +w 2w a

and
T T NH*H (vy)4C(wz) (1.16)

N ya u (wW2) (1.17)

in which N are normalization coefficients (1.31), Z and Y are given by (1.32)
u%'. and

an O(w,z) = exp(-iwz) and *C(w,z) = (i/2)exp(iwz) (1.18)
The scalar basis functions *iP(v,y) are

Rph P (v,y)

exp(iv0 y) + R0 (v)exp(-iv0 y), y > h

lexp[iv1 (y-h)]exp(iv0h)Tp0 (v), y < h (1.19)

*~ hP

lexp[-ivO0(y-h)3exp(-ivl1h)T pl(V) y > h

FZ exp(-ivlY) + Rpl (V)exp ivlY) y < h (1.20)

and P VY P( ')exp[-iVOs (Y-h) ], y > h

LQ~s~v y) y)

] h

exp[iv (y-h ) ] ,  y < h (1.21)

in which the reflection coefficients with respect to the reference plane

y = 0 (see Fig. 1.1) are

h P h P
R =- = R 1 0 exp(i2v 0 h) Rp1 = R0 1 exp(-i2v1 h) (1.22)

where RI -RP are the Fresnel reflection coefficients
10 01

a.,



P P 
- c1KP

R10(v) R C0 + C1K P

1

v0 - k0C0 , v -kC 1

and nl /no P-V
K P

an no/nI K P=H (1.23)

The intrinsic impedance for medium m is n = (P /F) " Furthermore

in (1.19) and (1.20)

P I+P
Tp0-1 + R land T 1+R (1.24)
P0. 10 P1 01

are the transmission coefficients and P (v,h) is the value of the surface

wave basis function at the boundary y = h. For a homogeneous model of

conducting ground the surface wave exists for the vertically polarized

waves only. The superscripts or subscripts V and H are used to denote

vertically or horizontally polarized waves. The symbol E denotes the

summation (integration) over the entire wavenumber spectrum v consisting

of the radiation term (0 < v0 < -), the lateral wave term (0 < v 1 <

and the guided surface wave term vis' For i - 0 or 1

v i =(k 2  2 2 I < 0 (1.25)

and for the surface wave term v is is a solution of the modal equation

P P
-iR 0 - 1/Rl - 0 P-V or H (1.26)

The wavenumber for medium i 0, 1 is

,k = (Iiei)P . (1.27)
.5' i

*The basis functions satisfy the biorthogonal relationships for P and Q equal

.A to V or H

'S

a'.

. ,5.- . :-:- : .< -. ..-.-. :. ...-. .; . .. :. . > .... ::.:
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f-P -T -

eT (h Q x ax ) ' dydz

- ,A(v-v')i(w-w')

(W PQQ T
T (a x x ep) 'dydz

-® (1.28)

in which, for the primed quantities the variables are u',v', and w' and

A(v-v') = 6
q6~(v- v ' ) ' v'OV s

.:V'Vs9 v' v (1.29)

The subscripts q,r are equal to 0, 1 or s for the radiationlateral wave and

surface wave terms, respectively, and 6(a-0) and 6a B are the Dirac delta

function and Kronecker delta, -espectively. The completeness relationship is

6 (y-yo) - I P NP *P(v,y)*P(v,yO)
v

00

= NO *o(v,y)4o(vYo)dvo

0

+ I N i *(vY)*l (v,Y0)dVl

0

" I s(VY)Ws (V'Yo) (1.30)

The scalar basis functions for the radiation fields, and the lateral and surface

P P P
waves are 0 ,1 ' and * s respectively. The corresponding normalization

coefficients are

NP (v ) - 1. Nh(v) - R /2lj(v), J-0,1, (1.31)

in which I are the transverse wave impedances or admittances. For J-O,l

.. .* . . . ;'*-* .A .* ' I I*; ** ., . ... '.. k ... *. . ..-- .'. ,-... .,- .-. ,-..,..
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'"2 u2 WE 0 0
"'. *.(v) - u + -w 2  - --

2 E 2 2 Z0(v
Uu +-,,v

- UWE 2

UE1
PI-=

2 2u +w H
H 2 +2 UW0  - Y (v)

H. 2 - Y (v) (1.32)

Thus in the above expressions for (which are independent of y), the

j

parameters for medium 0 are used for the radiation term, and the parameters

for medium 1 are used for the lateral wave term. On the other hand I P(v,y)

which is a function of y is given by

zV, y >h
zV (v,Y) = V

H H y h
Y(vY) .{

Y H y < h (1.33)

The irregular boundary and its gradient are assumed here to be continuous

functions of x only. Thus the exact boundary conditions at y - h(x) can be

expressed exclusively in terms of the transverse field components

1 .(RT x a ) - E dh t h+ 0 (1.34)
[J-V T " x y dx h-z h- -
L

"h+

iWITx x T) - - H \h+ _ 0 _(1.35)

, The complete field expansions are substituted into Maxwell's equations

for the transverse field components and use is made of the orthogonality

* .
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i. relationship, Green's theorem, and the exact boundary conditions, to obtain

p pthe differential equations for the field transforms E and H . These may

p pbe expressed in terms of the forward and backward wave amplitudes a and b

respectively, as follows:

-a+"ad -a +b , p
P. H P a P  P and upeP sg

H 
H, lower sign (1.36)

Thus Maxwell's equations are converted into the following generalized

telegraphists equations for P-V or H (Bahar, 1973a,b)

da P  W Ef(sBA aQ+SBB bQ)dw' - A P  (1.37a)
dx v' PQ PQ

and

dbP + iubP - ,f(SAA aQ + SAB bQ)dw' + B P (1.37b)
-'dx Q v PQ PQ

The transmission scattering coefficients for the radiation fields are given

by (Bahar, 1973b)

Spp(vVI) 1 ) (vv)-Cp(vv' I(w,w') P-V,H, -a (1.38a)

,v' - N-(V') P P ww ,cT

where

2 exp i(w-w')z]dz = I(w,w') 6(w-w')

for Z ® and

'"S (v,v') - (v v) 2 C H(v v') I(ww') (1.39)

~0~
The reflection scattering coefficients for the radiation fields are

S 00L(v,v') -.1 (V C P(vl,v) + C P(vivI' I(w,w') (1.40)

;0(-v -)
a n d 0 -

S V, )(vv') N ((v',v) 0 1 CH(v,v ) I(w,w') (1.41)

'.

1,- ,,'"-". N*Vv,

- .'K ',j.; ~...;CA%;:
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P
The coupling coefficients C are given by

P.. % ,) I P(v,y)Np(v,) P I2
,v)t- 2 i%(vy) o(Vy)

P - 2 axay

a P (V,.y) -! P(VI y) (1.42)

h

On employing the properties of the scalar basis function *09 it can

be shown that (1.42) reduces to

(vv) 2
-.'. 2_( 2v " v 2.:' " L ~~v '  v 2  oVY ( y

P 4,o(V,y) -1 o(VI Y)] (1.43)

h+

Similarly, it can be shown that

cV(vi,v) - UU' {I(V'Y) O (H uu'0 ax 0

+ 1 ( ., I 4 H(vy)

k 2 y y 0( ',y ) yk 2  2 axVHy

+ d-.h-h ( U 2 + w,2 o(V.y (v' y.(.4

dx c2 ay

Thus on using the properties of the scalar basis function *0,

iWNv(v') dh

CH ('v)m uu' dx

o (v,yYP0(v ,Y) - o(V,y)

(v',y)
4. Uy

- -i--- , *0 (v,h) 0 (v ,h)

U Uil. ~~u T- 0 0i. ..... .

"e ~ ~~~ 
E" 0 

' ' " - .r - " . " • " - " , " . " - " - " - ' - " . ' ., ' . " - " . - . '

. ~,,e.! ':t'' ,!.,,V , (,,>.,,,,. l ,,,- ... v . "1 " ("1'4,5)- ' ' : -. -:...,....".,,i > :... ,'.: .:.:-..,.,.
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Since excitations of vertically and horizontally polarized waves

(with respect to the reference (x,z) plane) are considered, both vertical
-,-i 1- i- i- i-i

electric and magnetic dipoles located at r - r - x a + y a + z a - -r n
0, x y z

are treated in this analysis. Thus for vertical electric and magnetic dipoles of

intensity J and M respectively the source terms AP and B P appearing in (1.37)

4 are given by V V

-. V V V i
= -JZo(V)No(v)*o(V,y

- wzi xxi
exp(iwz )S(x-x )/4,r (1.46)

A H(v) -B H(v)
".

-%H H H yI

exp(iwzi )6(x-x I)/47r (1.47)

"J p bP
The first-order iterative solutions for the wave amplitudes a and b

*are obtained by neglecting the transmission and reflection scattering

- . coefficients in (1.37). These first-order solutions are substituted on

the right side of (1.37), and the resulting equations are solved to obtain

the second-order iterative solution for the wave amplitudes. These

second-order iterative solutions are used in the complete expansions
,

for the electromagnetic fields to obtain the desired iterative solutions

for the scattered radiation fields through the use of the steepest

descent method. Thus the first-order solutions to (1.37) are the unperturbed

vertically and horizontally polarized fields excited by the vertical electric

*and magnetic dipoles respectively. The second-order iterative solutions

which account for depolarization and scattering in arbitrary directions

are suitable when multiple scattering can be ignored. Thus for x > x

the unperturbed wave amplitude excited by a vertical electric dipole of

intensity J (amp-meter) is

,:.' .e .. ... ' .,'...'... .. *.,. ..... '.'....-...'.'-.... .-* . . -. . "- '''- " - -.-. -
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V V
a (x,v,w) - H (x,v,w)

= exp(-iux) fxexp(iux')AV(x')dx'

= expr-iu(x-xi)]Av . (1.48)

V.., where V -

AV - : [N 40 ]  (1.49)

and

j(w,z) - exp(+iwz) (1.50)

Substitute (1.48) into (1.8) to obtain the unperturbed magnetic field

HT(x,y,z). Thus

H (x,y,z) HV(xviw)*V(v,y)(wz)dvdw. (1.51)

-~0

Noting that

[HV/R]- [Hv ]  (1.52)

it can be shown that for y > h and yi > h, (1.51) can be written as

H (xz ) - 8 2 j 0 0 exp[- i(ux + wz)]

* exp[i(uxi + wzi - v0yi dv0dw . (1.53)

When the vertical electric dipole is far from the rough surface (kri >> 1)

the steepest descent method is used to evaluate (1.53) (Brekhovskikh, 1960).

u= ksin6 cosO, v0 -kcose00 0 0cs 0

w- k0sinO0 sino (1.54a)

i i i i i
x -r sin0 cos* , y r cos80,

and z . -r sine0 sin*
i  (1.54b)

and x - r sine0 cos f  y rcose0 and

f f
z - r sine0 sino

f
. (1.54c)

*'QI • *qw j • ,i * • I • q ,"i •"." . .- - . k . .•. . ... . . . . . . . - . . .. .. * . . ..

p I, 1 p W , r ',,,j 'i' r' ,- q,, , ... .. ... .. '- " , . . . ." * - * " "*.~. ' *"-.
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I It can be shown that the unperturbed magnetic field near the boundary y =h,

is given by

H (x,y,z) - exp(-ik ri)
z 4ikrr1)

h V
[uRvo* exp - i(ux + wz)] (1.55)

i i ,i

in which 60 and * are replaced by 60 and in the expressions for u, v,

ii
and v, and Q (0e, ) is the direction of the incident waves from the vertical

dipole. Hence the azimuthal component of the incident unperturbed magnetic

field at the origin is

H i H /cos* 0 ik0J sine i exp(-ik0ri)/41rr (1.56)

To obtain the radiation field,transform use is made of (1.9). On

integrating with respect to y and z and using the biorthogonal relationship

(1.28) we obtain

HV (xv,w) - H Z 0 (vi) exp(-iuix)

6 (w-w') 6 (v-vi)

E a i exp(-iu ix)6(w-wi)6(v-v') - av (x~v,w) (1.57)
A0

where 21 is the dimension of the surface in the z-direction (-L < z <

Thus for a vertical electric dipole at a large distance from the rough surface,

the unperturbed field transform is represented by a Dirac delta function.

To obtain the second-order iterative solution that accounts for wave

scattering,(l.57) is substituted on the right-hand side of the coupled

differential equations for the wave amplitude a V(x,v,w). The resulting differ-

ential equation for the vertically polarized forward scattered wave amplitude

is integrated to yield

V.
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xVr BA

a V(xv,w) - -exp(-iux)_ S BA(V,v )

if i

ai exp i(u-u i)x'dx' (1.58)

*'- A similar expression can be derived for the back scattered wave amplitude.

For an irregular boundary of dimension 2L in the x-direction, y = h(x)

.* (-L < x < L), the forward scattered wave amplitude can be expressed as follows

a (x,v,w) i ) exp(-iux)
,- 2 12

U -u

L

Sdx exp i[(u-u )x + (v0+v0)h]dx . (1.59)

-L

Integrate (1.59) by parts to obtain the total (specular and non-specular)

scattered wave amplitude (assuming that k0L >> 1),

V V i i
H (x,v,w) - a (x,v,w) - M(Q, )I(SISI ,h,L)2L

• exp(-iux)/[(u+ui) (vo+Vt)] (1.60)

where I(Q, ,h,L) is given by

L
I(ia ,i h,L) exp{ik [(C + C )h

". ~~~i osi~x d.(.1
+ (S0 cosO - S0 cO )x)}dx. (1.61)

0'

The forward scattered radiation field is obtained by substituting (1.60) into

(1.51) using the relationships (1.52)

H (x,y,z) - J f HV(x,vw)
-a-

' exp-i(voy + wz)dv0 dw

00 M(SI'S i)I(Q,Q h L)2L

• exp-i(ux + v0y + wz)dv 0 dw (1.62)

" , - .4,,*, r - . 5. ..- . ....' . ".. ..' * * *-." .."....-.... .... .. •••. .... " .... .. .". .
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Using (1.54) to express u,v0 and w in terms of 00 and 0, and x,y, and z in~f f

terms of 0 and 0 the steepest descent method can be used to evaluate (1.62)

for k0r >> 1. Thus it can be shown that

SHz(X,yz) f + u f i

2i u exp(-ikr)M(O, 2 Q )( 0 ,ah,L)2L (1.63)
r(u f + ui) (v 0f + v0  (163

The solutions for the other scattered fieldsare obtained in a similar manner.

Thus the iterative solutions for the vertically and horizontally polarized

scattered radiation fields G P f  E 0H can be expressed as follows

IG fJ Go I(fqfflrC F F] (1.64)
[GHfJ S FHV FH IG Hi

Vf Hf Vf Hfin which E , E and H , H are vertically and horizontally polarized

- components of the scattered electric and magnetic fields, respectively, and

-ik 0411, f *1 iG GO f exp[-ik0 rf C 0 cos80  (1.65)

The projection of the rough surface in the (x,z) plane is A - 4L£, and the

observation point is at r - r n . The expression for the integral I in (1.64)

is

X L
-f -i- lrI(n ,n ,r,IA)

A-f -

•exp[ik0(r -n ).rs]dx dz (1.66)
S-i -f

in which n and n are unit vectors in the directions of the incident and the

scattered wave normals in medium y > h, and rs is the distance from the origin

to points on the rough surface.

*For two dimensionally rough surfaces

r. -xa x + h(x,z)ay + zaz - r (y-h)ay r- fay
* y z y(1.67a)

• *..-.v% V '~ .~ .." % ' 2'.o . .. ' .° .. ... " -. -'- .".".,.°... .
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where

f(x,yz) y - h(xz) = 0 (1.67b)

is the equation for the rough surface, and the unit vector normal to the

2 rough surface is

n Vf/!VfI

- sinycos6a + cosya + siny sin6ax y z
hzaz/(h 2 1 h "

=(-hxax + ayh - + +hZ) (1.68a)

where

ah = h and'=h (1.68b)
x x 9z z

In order to extend the solution (1.64) to problems of scattering by two-

dimensionally rough surfaces h(x,z) with arbitrary slopes, while preserving

the relatively simple forms of these iterative solutions, the rough surface

is regarded as a continuum of elementary surfaces of varying slope and

* height rather than a continuum of horizontal elementary surfaces of varying

.* height. The contribution to the total scattered field from an inclined

". elementary surface is obtained from (1.64) after making the appropriate

coordinate transformations. In this way the restrictions on the maximum slope

of the rough surface are removed while preserving all the advantages of

using the full-wave approach.

The contribution to the total scattered field from an elementary horizontal

surfaces at r - r of width dx dz can be expressed in matrix form asi" s

f idG G dS G (1.69)

- in which the constant O is defined in (1.65),G is the incident field at

the origin, and

V

4.

%%'i € %i r .c c %- -.'-.. "- - ...- .'. .'-'..*.' -.'--. ' - - .-- . a.- " Y'
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dS(xz) = F exp[iko(n- n ).r sdx dz/Ay

C F dI(x,z) (1.70)

The expression corresponding to dS(x,z) for an elementary surface

dA ndxdz/(n-a ) ndxdz/cosy (1.71)

is given by dC. In matrix notation it is expressed as follows:

Si r Inf -i
C= dC-j C nfF(nn )Ti

A A
y y

exp[ik0 (nf
- i) s ]dA.n/A y (1.72)

In (1.70) the angles of incidence and scatter with respect to the reference

plane (xz) are replaced by the local angles of incidence and scatter with

N4 respect to the local tangent plane. The the elements of the matrix F

(1.64) are (Bahar, 1981a,b)

2Cinfnr( infn fn in in fn fn in)
2C in 0 Lr C i cos(O -o )-S0 S0 )(l-i/P )+(l-F )cos f-

0 nFHM- 0 r 1 1 0U 0 r r

0 CCin in fn fn in fn
(C0 +nrC1 )(C0 +0Cl )( 0 +C0 )

infn infn- fn in infn ifn.

CoinHV 2C0 C0 [(COr C1 cos( -, )-S 0 S0 )(l- / r)+(l-r)Cos(,rn)]
0 in C i fn C fn in fn

(C0 +l In0r)(C0 +C Inr)(CO 0 +0

fn in in fn infn
,I -sin(O -, )2C0 C0 nr[(1-1/ur)Cl _-1/r)Cl

0C(C in Cin )Cfnn fn )Cin +Cfn

(C0 +r 1  r 0(C0  r (C0  0
:! fn in 2 in~ fnn (i/r)in_( /)fln ]

., inV = sin(¢ - )2 CO nr[(1/(1.73(11/)) 1

0 2,in in fn fn _in _fn.(.3

in which the dimensionless quantities nr ,rr, and Ur are the refractiver.t ro

index, relative intrinsic impedance, relative permittivity, and relative

permeability, respectively

". . ,- Zf.. .. .. . . . . . . .
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n - (IE U O)

r 1 0  0

r  = 1I/ C 0
*4'

Ur  I ll /P 0  (1.74)

The cosines and sines of the angles of incidence and scatter (with respect

"in fn
. to the local coordinate system) e0  and 80  in free space, y > h(x,z), are

given by (see Fig. 1.2)

in in -i -

C0  Cosa -n n

0 0c 0= cose0 n f n (1.75a)

in -1

fn -n f x n (1.75b)

The sines of the corresponding angles in medium 1, y < h(xz), are given by

Snell's law

in in in
Sn sine 1 Son/n

fn fn fnSf sine 1 /n r (1.76)1 S 1 0 nr

Thus

in in in2P
C 1  -Cos@, 1 1[-s)

fn- -n -nC"os 8 - [ , (1.77a)

cos,. - ) anf" aHi

and
sin(f- in) [aHfaHin (.78b)

4

~~~~~~~~~~~~~~~~~~~~~~~~~..'-.....-... ., .....-.... ... .-.... .-:..,..,..... ,. ....-. - , .... ,.

si( .f a. . . .Hi n]'
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°-f

a (n xa /n~ xHf y y
-n -f - -f -
Hf (n xn)/In xnl (1.79)

and

a (n xay ) n/ xa
Hiy y

-n -i -

a Hi (n xn)/l n xnI (1.80)

The vertically and horizontally polarized components of the incident and

scattered electric and magnetic fields with respect to the local plane normal

-, to the unit vector n, are denoted by the subscript n. They are related to

the components with respect to the reference plane through the following

transformations

G in n (1.81)

Inn

G (:Hf]- TfGf = f5  CJ f 1H 1.2

in which C and S are the cosine and sine of the angle between the local

* plane of incidence and reference plane of incidence normal to the unit vectors

aHi and a~i, respectively. Thus they can be expressed in terms of the scalar

product and the scalar triple product

i -n
Cj C OS* a Hi * a Hi

i i - -n -i

S -sin* a HiaHin] (1.83)

f adf

Similarly, C and S are the cosine and sine of the angle between the local

plane of scatter and the reference plane of scatter normal to unit vectors

an and a respectively. Thus
a Hf aHf, hu
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f f - n
C Ccos f  af a n"4 fifi n nf

s sinpf  [a nf)afnf (1.84)

* The full wave solutions for the scattered wave amplitudes can therefore be

. expressed as follows in matrix form

f
G . Go  C

'A

exp[ikO nn ) • s]U(Gs)dX • -Gi

-f -i iG 0oC(n ,n )G (1.85)

In which the shadow function U(r ) is

- = illuminated and visible region

{O nonilluminated or nonvisible region (1.86)

The normalized scattering cross section per unit area for rough surfaces is

,shimaru, 1978)

G - 4w(rf) 2E ef2/[AyE Qi2] (1.87)

in which A is the projection of the area of the rough surface A on the

reference plane normal to a . Thus for P,Q-V,H

PQ 2 2 kO P Qko "2 k0

Q = I. jcj rD (_S')
exp[ik0 (nfni). ( s_)]U(r )U(r) dxdy dx'dy' (1.88)exL' n- ) r ) ( ' y)n- ay

where DPQ is the element of the matrix

D - c0 TFTi (1.89)

*' and the symbol * denotes the complex conjugate.

For the incoherent, diffuse field the scattering cross section for unit

*cross-sectional area is given by (Ishimaru, 1978)
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<aPQ> = 47(r )2 <j p f - <EPf> 12>/A y EQ il 2  (1.90)

.1b

in which the symbol < > denotes the statistical average.

Thus the full wave expressions for the normalized scattering cross section

per unit area is

PQ 0 exp{iv y(h-h')} - [<-PQ U exp(iv yh)

y L y

A,A'

exp[iVx(x-x') + iv (z-z')]dxdz dx'dz' (1.91)

in which

v =k(nf-ni) =Va + v a + v a (1.92)0.. x y y z z

' and
PQ -Q-

sPQ DPQ(r)U(r) DP(r')U(r') (1.93)
n-a n' a

y y

s,'

r.

a'

',,

.. . , ', ' ,, ,,, .. , " . . , .,-"-'..E!. ! J-." .. ~.. .. '. .. .. , ... . . . - " - , •
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1.2 Interim Technical Reports and Publications in Scientific/Technical

Journals

Preprints of the following manuscript "Scattering Cross Sections

for Composite Models of Non-Gaussian Rough Surfaces for Which Decorre-

lation Implies Statistical Independence" were submitted to the contract

monitor for publication as an Interim Technical Report (March 1, 1982-
C°.

Nov. 30, 1982).

Abstract of Interim Report

The full wave approach is used to determine the scattering cross

C,. sections for composite models of non-Gaussian rough surfaces. It is

assumed in this work that the rough surface heights become statistically

independent when they decorrelate, thus no delta function type specular

term appears in the expression for the scattered fields. The broad

C- family of non-Gaussian surfaces considered range in the limit from ex-
a'

ponential to Gaussian. It is seen that for small angles of incidence,

the like polarized cross sections have the same dependence on the

special form of the surface height joint probability density, but for

large angles the scattering cross sections for the horizontally pola-

rized waves are much more sensitive to the special form of the joint

probability density. The corresponding results for the depolarized

backscatter cross section are also presented. The shadow functions

are shown to be rather insensitive to the special form of the joint

probability density.

Preprints of the following manuscripts and conference papers

were submitted to the Office of Public Affairs and project monitor

for review and approval for publication:

a,

a,, b ,.,.,,. .. ' ' .J '"." -•- . . . "."-'."-. . . .".". "-"-"-" ""' N '''-.%- '""' - -
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1. "Propagation of Vertically and Horizontally Polarized Waves Excited
by Distributions of Electric and Magnetic Sources in Irregular
Stratified Spheroidal Structures of Finite Conductivity Generalized
Field Transforms", Canadian Journal of Physics, Vol. 61 No. 1,
pp. 113-127, 1983.

2. "Scattering and Depolarization of Electromagnetic Waves in Irregular
Stratified Spheroidal Structures of Finite Conductivity--Full Wave
Analysis", Canadian Journal of Physics, Vol. 61 No. 1, pp. 128-
139, 1983.

3. "Scattering Cross Sections for Composite Surfaces That Cannot Be
Treated as Perturbed-Physical Optics Problems," Radio Science, in
press.

4. "Computations of Scattering Cross Sections for Composite Surfaces
and the Specification of the Wavenumber Where Spectral Splitting
Occurs", Submitted for review.

5. "Scattering and Depolarization by Rough Surfaces: Full Wave
Approach", Proceedings of the SPIE International Technical Symposium
of the International Society of Optical Engineering, Vol. 358 No. 28,
pp. 1-14, August, 1982.

6. "Comparison of Backscatter Cross Sections for Composite Rough Sur-
faces with Different Mean Square Slopes", International Journal of
Remote Sensing, in press.

7. "Shadowing by Non-Gaussian Rough Surfaces for Which Decorrelation
Implies Statistical Independence", Radio Science, in press.

8. Joint International IEEE/APS and National Radio Science Meeting at
the University of New Mexico, May 24-28, 1982, "Scattering Cross
Sections for Composite Surfaces with Large Mean Square Slopes--
Full Wave Analysis."

9. The SPIE 26th Annual International Technical Symposium of the
International Society for Optical Engineering, San Diego, Califor-
nia, Aug.23-27, 1982. Title of Invited Paper, "Scattering and
Depolarization by Rough Surfaces."

10. International IEEE/APS Symposium and National Radio Science Meeting
*at the University of Houston, Texas, May 23-26, 1983, "Rough

Surface Scattering that Cannot Be Analyzed Perturbed-Physical Optics
Approaches."

11. International IEEE/APS Symposium and National Radio Science Meeting
at the University of Houston, Texas, May 23-26, 1983, "Scattering
Cross Sections for Composite Surfaces and the Wavenumber Where
Spectral Splitting Occurs."
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2.0 SCATTERING CROSS SECTIONS FOR COMPOSITE SURFACES THAT CANNOT BE

TREATED AS PERTURBED-PHYSICAL OPTICS PROBLEMS

2.1 Background

'. Perturbation and physical optics theories have traditionally been

used to derive the scattering cross sections for composite surfaces that

can be regarded as small scale surface perturbations that ride on

• 'filtered, large scale surfaces. In this case perturbation theory accounts

for Bragg scattering, while physical optics theory accounts for spec-

ular point scattering. However, for a more general class of composite

surfaces that cannot be decomposed in such a manner, the perturbed-physical

optics approach cannot be used. In these cases, it is shown, using the
'I

full wave approach, that the specular scattering associated with a fil-

tered surface (consisting of the larger-scale spectral components), is

* strongly modified, and that Bragg scattering and specular point scatter-

ing begin to blend with each other. Since the full wave solution

accounts for Bragg scattering as well as specular point scattering in

*a self-consistent manner, it is not necessary to filter (decompose)

the composite surface to evaluate the scattering cross sections in the

general case. However, filtering the composite surface enhances one's

physical insight as to the validity (or lack thereof) of the perturbed-

physical optics decomposition, and also facilitates the numerical eval-

uation of the scattering cross sections.

2.2 Discussion

In order to account for Bragg scattering as well as specular point

scattering from random rough surfaces, composite models of the surface

with different roughness scales have been considered (Wright 1968,

.1
-S ..,. .
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, Barrick 1970, Barrick and Peake 1968). Thus, for instance, for back-

scatter more than 300 away from the vertical, it is shown through the

use of perturbation theory (Rice 1951) that Bragg scattering is domin-

ant and the scattering cross section, which is polarization dependent,

is proportional to the surface height spectral density function. On

the other hand, using physical optics theory (Beckmann 1968), the back

q . scattering cross section near normal incidence is shown to be primarily

due to specular point scattering and to be independent of polarization.

Using the composite models of Wright (1968), Semyonov (1966) and

9.i Valenzuela (1968) which are "mostly based on physical considerations,"

the rough surface is regarded as patches of slightly rough surfaces

4l that ride over the large waves. Thus, in their work the scattering

cross section associated with the surface with the small scale roughness

is obtained by averaging over the distribution of slopes of the large

scale roughness, or by averaging over the tilt angles in and perpendic-

ular to the plane of incidence.

More recently Brown (1978, 1980) applied a combination of Burrows'

" perturbation theory (1967) and physical optics theory (Beckmann 1968)

to derive the backscattering cross section from a perfectly conducting

two scale model of rough surfaces. The first term in his solution is

the specular point backscattering cross section associated with the

large scale surface height h£ and the second term is the Bragg scatter-

ing cross section associated with the small scale surface height hs.

Thus, in his work it is necessary to decompose (i.e., spectrally filter)

the composite surface. To this end, Brown's specification of the

,--"
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•
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wavenumber kd (where spectral splitting is assumed to occur), is based

entirely upon the characteristics of the small scale structure (Brown

1978). However, in the approaches of Hagfors (1966) and Tyler (1976)

the specifications of kd (spectral truncation) is assumed to be based

on the characteristics of the large scale surface. In their approaches,

1%. however, they ignore the effects of the surface comprising the small

scale spectral components (k > kd) since their results are not meant to

explain scattering far removed from the specular direction. In addi-

tion, it should be pointed out that even if the spectral components of

the large acale (filtered) surface satisfy the radii of curvature cri-

teria (associated with the Kirchhoff approximation of the surface

fields), they may not necessarily satisfy the condition for deep phase

modulation implicit in the evaluation of the specular point result

(Barrick 1970).

In order to apply the full wave approach (Bahar 1981 a,b, 1982a,b)

to problems of scattering by rough surfaces, it is not necessary to

decompose (filter) the rough surface into one surface h with a smalls

roughness scale, and another with large radii of curvature. However,

when such a decomposition is feasible and the restrictions on both the

1large and small scale roughness are satisfied simultaneously, the full

• "wave solutions for the scattering cross sections (which account for

both Bragg scattering and specular point scattering in a self-consistent

manner), can be expressed in terms of a weighted sum of two cross

r sections in agreement with perturbation and physical optics theories.

A comparison between the full wave approach and the approaches of

64, Brown and Valenzuela has also been made recently for surfaces with

.o~. 0 ~ ~ *~ *0
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moderately large mean square slopes (see Section 2.3).

The major objective of this work is to apply the full wave approach

to composite surfaces which cannot be decomposed into a two scale model

without violating either the small height variance criteria essential

to the application of perturbation theory or the large radii of curva-

ture criteria essential to the application of physical optics theory.

Thus, in Section (.3) the principal formulas for the scattering cross

sections are developed for surfaces that do not satisfy either the small

variance or the large radii of curvature restrictions. In Section(2.4)

a composite surface which does not satisfy the physical optics (Kirch-

hoff) criteria is analyzed in detail. To decompose this surface it is

assumed that the wavenumber kd is specified in accordance with the cri-

teria proposed by Tyler (1976) and that the surface that rides upon the

filtered (Kirchhoff) surface may not satisfy the perturbation criteria.

It is also assumed that if the wavenumber kd were specified in accord-

ance with the criteria based on the variance of the small scale surface

(Brown 1978), the remaining large scale surface would not satisfy the

standard physical optics criter-a. Thus, a perturbed-physical optics

approach cannot be applied to the problem. It is shown that the scat-

tering cross sections for this general class of rough surfaces can be

expressed as a weighted sum of two cross sections. The contribution

associated with the filtered (Kirchhoff) surface is multiplied by a

factor which is significantly smaller than unity and the term associated

with the remaining surface that rides upon the filtered surfaces may

contribute significantly even in the near specular direction. Thus for

this general model it is illustrated that classic Bragg scattering and

U'V
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V.

specular point scattering begin to blend with each other. Since the

full wave approach accounts for both Bragg and specular point scattering

it is not necessary to decompose (filter) the composite surface when

the full wave approach is applied to this broad class of scattering

problems; however the decomposition may provide additional physical

insight into prior approaches and facilitate the computation of the

scattering cross sections.

2.3 Formulation of the Problem

Using the full wave solutions for the incoherent scattered radiation

fields, the expression for the normalized scattering cross section per

unit area (Ishimaru 1978) is given by

k 2  D[P PQ DU 121
<GPQ> - o <f SPQ exp{ivy(h-h')l - I <_--- exp(iv yh)>

TyA,IAL na y

•exp[ivx(x-x') + ivz (z-z')]dxdz dx'dz'> (2.1)

Second order iterative solutions for the scattered wave amplitudes

are used in the derivation of (2.1) (Bahar 1981a,b; 1982a,b). This

approximation of the full wave solution is suitable when multiple scat-

tering can be neglected. In (2.1) A is the projection of the rough

surface on the reference plane (y-0) (see Fig.2.1)and k° is the free

space wave number of the electromagnetic wave. The vector ; in the

cartesian coordinate system (x,y,z) is

v - k n f n) i +v + V (2.2). o xx yy zz-i -f
where n and n are unit vectors in the direction of the incident and

"." scattered wave normals respectively. The coefficient S is (Bahar

1981la)

9PQ DPQ ()U(i) DPQ*(F,)U(r') (2.3)

Sy y

.4," - -' - - ' '' ' "'. "." % +" ,'. " . g . . ',p + ' , +, . ,+ ' . o - . ' . + + . , ' . . . , ° ' ' " " '- . , l . ',• . . . - . . o .. ° + . %
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in which DPQ depends explicitly upon the polarization of the incident

wave, (second superscript Q-V - vertical, H - horizontal) and the

polarization of the scattered wave (first superscript P - V,H), the
-i nf

directions of the incident and scattered wave normals n and n . the

complex permittivity and permeability of the medium of propagation and

.the unit vectors, n(h,h), n'(h',h') normal to the rough surface at

r(x,h,z) and r'(x',h',z'). Thus for the random rough surface

f(x,y,z) - y-h(x,z) - 0 (2.4a)

4 Vf - V(y-h(x,z)) - (-h a + a - ha z) - nIVfJ (2.4b)
x x y

in which the components of the gradient of h(x,z),

h = Dh/Dx, hz - Dh/az (2.4c)
x

. are random variables. The shadow function U(r) is unity when the sur-

face is both illuminated by the source and visible at the observation

point and zero otherwise (Sancer 1969). When the surface height h and

slopes (h x hz) are statistically independent (a condition that holds for

Gaussian surfaces at each point)

D PQU DPQU
-<_ - exp(iv h)> < _- >X (Vy) (2.5a)
n*a y n*a y

y y

in which X(v ) is the surface height characteristic function
X(v)y - <exp(ivyh)> _f O exp(ivyh)p(h)dh 

(2.5b)

In (2.5b) p(h) is the surface height probability density function. The

symbol * denotes complex conjugate and the symbol <> denotes the statis-

tical average.t

tAs an example, for a Gaussian surface, X(vy) " exp(-v 2<h 2>/2), where
y y

2 < h2> is the mean-square surface height.

..
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r..

If at high frequencies the higher order derivatives of the rough sur-

face h can be neglected (Sancer 1969, Bahar 1981b; Bahar 1982a,b)

PQQ FD pQ* 1 -
- <SPQ exp{iv (h-h')}>- PQD ) DP(r' )Mr) expiv [h (x-x')+h (z-z')]}

- (n-a ) (n'a y)

• '"'p(n,n',UU')dn dn'd(UU) (2.6)y y"

in which p(n,n',UU') is the joint probability density function of the

slopes ;(hx,hz), n(h',hz') and the shadow function product U(r)U(r') and

dn - dh dh , d;' E dh'dh' (2.7)
x z x z

The joint probability density function p(n,n',U') can be expressed

as follows:

p(n,n',UU') - p(n,,')p(UU'lnn') (2.8)

Assuming that hx and hz are independent variables (which is true for

surfaces with isotropic roughness)

.' p(n,i') - p(h .h')P(h ,h') (2.9)
X xx z z

. For a rough surface height with a Gaussian distribution, for example,

[h2- 2Chh' + h'1
p(h- h'x exp 2 xhxx (2.10a)

x x
.7r 2a2 (1_C 2

in which it is assumed that

<h > - O, <h2> - a2 and <h h'> - a C (2.lOb)x x x x x xX

For the homogeneous isotropic surface assumed in this work the normal-

ized autocorrelation function C is a function of distance
x

rd M (x-x')ax + (z-z')az - xday + zdaz (2.11)

The density p(h z,h') is given by (2.10) with hx replaced by hz andz

',-i
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- <2 2 2 2 22

<h > a 0, <h >-a . Cx, <h h > - C - a c (2.12)
z z z Z Z Z Z X x

The two point conditional density function p(UU'jn,n') is expressed in

Ii a form similar to the one given by Sancer (1969) for p(Ujn). Thus,

f, I, -f 'I-i)6UU)(.3
p(uU'ln,n') f P2(n ,n n '16(UU'-1) + [ 1-P2(fi n, n')]6(U'),(2.13)

in which 6(a)is the Dirac delta function and P2(nf,nil_,n') is the

probability that the points r and r' on the rough surface will be both

illuminated by the source (incident wave normal, n (0 , i)) and visible

at the observation point (scatter wave normal, nf (0f,6)) given the

value of the unit vectors normal to the surface n and n' at these

points. In (2.13)

(f -i P 2(
1

)f niI),) for r - r cx+ I{ 2
2 (nf 

ninnnn)P
2 (nf,niuiP), for Ir-r' ,C - 0 (2.14)

and
"2( f 'i ) f P2 (n n is)s(n n -n s( (2.15)

in which P2 (nfni n) is the probability that a point on the rough sur-

%.face is both illuminated and visible given the value of the slopes at

the point and P2 (nf , nins) is its value at the specular points (;-*n 5s)

(Smith 1967, Sancer 1969). The arguments of the unit step functions

(-ni .i) and S(nf*n) vanish at points of the rough surface where the

incident and scattered waves are tangent to the surface. Thus S(-n 'ns)

-f-and S(nf-ns) 1 (Smith 1967, Brown 1980). In view of (2.14) and

(2.15) it is assumed that

S
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2-(C +C )/2

x z
P2 (nnnn - P2 n s

*S(n n)S(n -n )S(-ni*n)S(-ni*n ') (2.16)

Substitute (2.16) into (2.6) and integrate with respect to UU' to get

PQ D _Q__________(P)<S exp[iv y(h-h')]>- f. (r)a"' (r a exp~ivy (h x +h zzd)i .i(n.ay ( ay)

P 2(nf,ni n,n')p (n,n')dn dn-1 (2.17)

Since <SPQexp[iv y(h-h')]> is assumed to be a function of the distance

trd1,(2.12), the scattering cross section (2.1) reduces to

2 r0rPQ nv f 2)
"PQ J S exp[ ivy (h-h')]> _____ ______ X

-- n*a(

• exp[ivxxd + iVzzd] dxddZd (2.18)

In (2.18) the integrand vanishes when IrdI is much larger than the

correlation distances. The evaluation of the scattering cross section

(2.18) simplifies considerably if it can be assumed that for Irdl less

than the correlation distances £Xx (C (I ) C (I ) l/e and e is

the Neperian number);( ) =n'(r'). In this case p(n,n') - p(;)6(n-n')

and
SPQ -,I DPQ ()U (r (2.19)

n-a
y

*Thus, for instance, when the radii of curvature of the rough surface

are very large compared to the electromagnetic wavelength X, or when the

slope of the surface is small n= a

2

< sPexp[ivy (h-h') ]J-JD__) exp[ivy (h-h')]

y

•p(hxhz)P 2 (n
f n )d hx dh z > (2.20)
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Equations (2.1) and (2.20) can be applied directly to composite

*surfaces (Brown 1978, 1980) given by

h - hj+ h (2.21)

where hx and hs are assumed to be statistically independent random func-

tions

2 2 2 2 3h
k <h2> k a < 1,1 " l - Ih I<< 1 L-j-z h z<< 1, (2.22a)0 s 0 s ax 'x az sz

k 2 <h2> - k2a 2 >> I (2.22b)

and the radii of curvature of the surface h is much larger than the

wavelength A. In this case the full wave solution for the scattering

cross section accounts for both specular point scattering as well as

Bragg scattering, and (2.21) reduces to (Bahar 1981b, 1982a,b)

<aPQ> M <aPQ>0 + <aPQ>1 (2.23)

The first term in (2.23), <a PQ> is the specular scatter contributiono0

47rk 2r0 21 <°Q " ,. -- P2 1f n ) p(nT I Xs(;-.n)

v y - -

I - - 2 'Ps
x (v'n < > (2.24)

in which X (v ) 1 is the characteristic function for the small scale

surface height roughness,h , and <aPQ> is the physical optics scattering

.* cross section (Bahar 1981a,b). The second term which accounts for Bragg

scattering is given by

<( > w iXk2  W(vv-)P (n f 'ln) p (hxthz)dhxdh (2.25)

in which W(v-,v;) is the small scale surface height spectral density
xz

(Barrick 1970, Ishimaru 1978).
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W(v-,v-) . <h(xz)s(x'')> exp(iv xd + iv Zd)dxd dZd (2.26)

In (2.26) it is assumed that the small scale surface autocorrelation

function depends on distances Ixdn + dn2
1 measured along the large

scale surface y-hX(x,z) - 0, and K , the small scale surface height is

measured penpendicular to the large scale surface. Furthermore
"L v -v-1 + v-2 + v 3

v n n (2.27)

is the expansion of the vector v in the local coordinate system (at

any point on the large scale surface) associated with the unit vectors

n 1 n 2 and n3 (Bahar 1982ab) (see Fig. 2.2).

n1 - (n x az)/I; x azl, n2 " ' nP; 3 ' nl x n (2.28)

The scattering cross section (2.25) is in complete agreement with pertur-

bation theory (Rice 1951, Barrick 1970). Thus<aPQ> 1 can be regarded as

an average (over the distribution of slopes of the large scale surface)

of the scattered power from patches of slightly rough surfaces that ride

pthe large scale surface (Wright 1966, 1968, Valenzuela 1968). On

expressing the unit vector ; in terms of the slope angles * and 6 in

'- and perpendicular to the plane of incidence, the scattering cross section

(2.25), can be compared with earlier solutions that are "mostly based

on physical considerations" (Valenzuela 1968, Valenzuela, Liang and

Daley 1971, Bahar 1981c). The expression (2.25) is also in agreement

with Brown's solution (that is expressed in terms of a two-dimensional

convolution of transforms) provided that the mean squares of the large

scale slopes 2 are very small. The difference between Brown's
soltio aoe fx " z
solution and the full wave solution arises because Brown (1978) (on

I.°

W. ..
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using a combination of Burrows' perturbation theory (1967) and physical

optics (Beckmann 1968) assumes that the surface height autocorrelation

. function for the small scale surface Cs is dependent on distances in
".

* the reference (mean) plane rather than distances along the large scale

surface, as assumed in this work and implicitly assumed by Valenzuela

(1968). Furthermore, it should be pointed out that in Burrows' pertur-
-..

bation theory the small scale surface height is the distance from the

unperturbed (filtered) surface to the perturbed surface measured along a

line perpendicular to the unperturbed surface rather than perpendicular

to the reference surface as assumed by Brown.

Since the full wave solution (2.23) accounts for both Bragg scat-

tering as well as specular point scattering in a self-consistent manner

without introducing a combination of perturbation and physical optics

theories, it is not necessary to decompose the surface ht Into large

and small scale surface heights hI and hs in order to evaluate the total

scattering cross section <a PQ>. Moreover, it is not necessary to

restrict the application of the full wave approach only to surfaces that

can be regarded as a small scale surface perturbation superimposed on a

large scale surface roughness with very large radii of curvature compared to

the wavelength. Thus in Section 0.4) the full wave approach is applied to

more general composite rough surface models that may frequently fail to

-satisfy these restrictions.

2.4 Application to Surfaces That Do Not Satisfy Perturbation and

Physical Optics Criteria

If the statistics of the rough surface are known for the entire

-. e
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composite surface h(x,z), the total scattering cross section can be

evaluated using the full wave solution (2.18). Thus using the full

wave approach it is not necessary to specify the wave number k at

which spectral splitting between the two scale surface heights is

assumed to occur. On the other hand, when different theories such

as physical optics and perturbation theories are combined to analyze

*composite rough surfaces, it is necessary to spectrally decompose

(filter) the rough surface. For instance, in Brown's work (1978) the

specification of kd is assumed to be based upon the characteristics

of the small scale structure (k2 <h 2 > << 1). However, in the work by

Tyler (1976), the specification of kd is assumed to be based on the

characteristics of the large scale surface. Thus, in order to apply

physical optics theory to the large scale surface roughness, Tyler

imposes the condition

P(r <r12 ) << 1 (2.29)

in which P(Ir 21 < r12) is the probability that ir121 (the absolute

value of the product of the principal radii of curvature of the large

scale surface) is less than r12, and the critical value for r12 is

assumed to be k-2 (Tyler 1976). If both conditions (2.22b) (k 2<h 2> << 1)
SO S

as well as (2.29) (P(r12j2  r12 )  << 1) are satisfied simultaneously,

the scattering cross section is expressed as the sum of the specular

point scattering cross section and the Bragg scattering cross section

(2.23), since surfaces h and h individually satisfy the limitations

imposed by perturbation and physical optical theories respectively.

However, if both conditions are not satisfied simultaneously, the
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physical optics model or the perturbation model or even a perturbed-

physical optics model cannot be assumed in general.

To gain more physical insight and to facilitate the evaluation of

the cross section (2.1), it is assumed here that the rough surface

height h is decomposed into two surfaces hF and R (see Fig. 2.3). Thus

r - F (xhFz) + (2.30)

in which, following the filtering scheme proposed by Tyler (1976), the

surface h.F satisfies the conditions P( r12 1 < r1
2) << 1 and k <h > >> 1.

However, it is assumed that the remainder term R does no__t satisfy the

2 -2-i perturbation condition (ko<hR> << 1). Assuming that hF and hR are

statistically independent random functions

<exp"iv (h-h')]> ) explliv (hFx +hz) ]X R(v ,-v) (2.31a)
y y x d z d2vy-y)

Thus the full wave solution (2.18) can be written as

kFR2 RR<a PQ> _ 2 .. sPexp[iv (hFx +hz,)](IXI +X-Ix 2) (2.31b)
it <1 y xxd zd)] X2-

exp[,ivxxd + iv zzd]dxd dzd>

in which for convenience the term I xR12 is added and subtracted and k
R

"° R
and X are the characteristic and joint characteristic function for the

surface height hR respectively.

(v R = <exp[iv,(-)]> (2.31c)• ." X2 Vy,- hi

In (2.31b)it is assumed that IXFi 2 << 1 since k2o<h> >> 1. Thus, fol-

lowing the analytical procedures used in deriving (2.23) (Bahar 1981c),

it can be shown that

<aPQ> <oPQ >F + <a PQ>R  (2.32a)

R

Z-
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in which 2
PQ> F k < fSQpfivy( Xd+h zd)]IX Ri exp~ivx +iv z ddx dz >

<0x zF dx d z d d d>

+ !R.n )2 <CO > (2.32b)

p and <oPQ> is the specular point scattering cross section for the
K,: filtered surface hi. Since in this case it is assumed that <-2 is

not much smaller than unity, the factor in (2.32), IXR[ 2 , can be signi-

ficantly different from unity. On deriving the expressions for <aPQ>

(2.24), and <aPQ> (2.32b), it is assumed that v2<h2> >> I and deep

a phase modulation occurs for all the roughness scales included in hF.

Furthermore, the scattering cross section associated with the sur-

face hR (that rides on the filtered surface) is

k 
2

<J-i 0- < [x2(v_,- v_) - IXR(vJ 2J (2.32c0R Tr 2 y y

-exp[iv Xd + iV-Zd]dXd dzd>

in which it is assumed that (2.19) is valid, v-, v- and v- are the com-x y z

ponents of v in the local coordinate system associated with the filtered

surface hF (2.27), and d + zd) is distance measured along the

filtered surface y-h F(x~z) - 0 (see Fig. 2.3).It can be readily shown

2since in this
that if k0<h> << 1 (2.32c) reduces to (2.25) with R hs

caseR)( -"R~ 12 _ V <
X ,(vy)p- I 7 h> (2.33)

If the surface height h is normally distributed and

ko0<;> is not much smaller than unity
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4vsv)-%1. (2.34X2R(Vv - IXR(v )I 2.e - 2<-22(.3

In this case (2.34) is expanded as follows

R _IXR(v )12 2 -2 (< y hRhl
X2(v-v y exp(v<hi >)E m! (2.35)

and <aPQ>R (3.22c) can be expressed as

0 R Rm (2.36)m,,l

where 2 PQ 12P (nfii)

44. k IDPQ22 n2  n)f 2i-2< PQ> o F 7
__

< -- exp(-v2<>)

°° y

• v<LR exp(ivjd + iv zd)dXddzd>

2 ID PQ12P 2(nf'nn) , - 2<-2, 2m W (Cx,V-)

4_k 0- __, exp-v, Chi>). ) > (2.37)

and

( M 1 (<h..,)mexp(iv-xd + ivzd)dx dZd2. 22m (27 2-- zd d

,- ~ 1 , C
2T J rinv5 ,v!)wl%  v ,v- )vv

- - 1 (v-. v -) )W (v ,v-) (2.38)
2 2mm-x z Ix5

In (2.38) the symboliGdenotes the two dimensional convolution of W
W1 (v-,vj) W(v-,v M

with W. Since 4 is the two dimensional Fourier

transform of the surface height autocorrelation function <h Rh>, the

47
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term <0PQ>RI accounts for first-order Bragg scattering. However, since

4k i> is not much smaller than unity the factor exp(-v h ) appear-
o R

ing in <a PQ>Rl is significantly smaller than unity for backscatter near

normal incidence and approaches unity for backscatter near grazing

incidence. This factor does not appear in the solution derived on the

hasis of perturbation theory (2.25).

: When the autocorrelation function <_hR i> can be expressed analytic-

ally in closed form, the two dimensional Fourier transforms in (2.38)

can be integrated directly. For example, when the Gaussian form is

used,
-2 -2 2

... > -2_( z2)/T 2  (2.39)

closed form expression can be derived for W-(vvv Z) which are also

Gaussian (Beckmann and Spizzichino, 1963). However, since in practical

*problems the surface height hR is usually characterized explicitly by

its spectral density function W(v.-,v-), and since this function is rarely

"V Gaussian for natural surfaces, the Fourier transforms in (2.38) are

evaluated through the repeated use of the two dimensional convolution

theorem.

If the mean square slope of the surface height is very small com-

pared to unity (n y)

So>V 47rk 2 IDPQt 2  P2(;f,;ii; )exp(-v 2y<j>)
,0,, n-a y

• 4

a2) 2 2x---(2.40)

I, . ". ."" " ." . , '-.. " . " "" " ' " "- - - " " " " ." " - -" • - "."- . - - - "- - "- v " " " • ". " " "- .
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The expression <PQ:>R2 can be readily evaluated for backscatter

near normal incidence. Thus assuming a perfectly conducting surface,

-f -i-
for nf  -n - a

y

<(kPQ> 21k 6 exp(-4k2<2>)w2 (0,0) (2.41)

Assuming, for example, as isotropic surface height spectral density

of the form

/k 4k < k <k2
~W(k)0

1 k 1 and k > k2 (2.42)

2 r k

W f2(°,) f W(k)kd kdO -A 1
1 k 6k 2  (2.43)

The mean square of the surface height hR is

. o k I  [k k 2-2 2 2~k

Thus for k
2 >> k2

2 1

w (°°) ( A 2 (2.45)

and (2.41) reduces to

+P 2-2 3 2<-2 (.6
<03i> (4k2<hj>) exp(-4ko hR>)
<°PR2 3-f " 0 (2.46)

As in (2.25), the contribution <a PQ>R, (2.32c) to the scattering cross

section is due to scattering by the surface h that rides on the filtered

surface hF. In general however, if kohi> is not much smaller than unity

** %* ngnrl oeei 2-
, '. :..,. '.,, , .. , .. . , .* . , ,-,, ., ., ., ,.,. . . . , . ., . - .
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the contribution to the scattering cross section <aQ>R, (2.32c)

cannot be derived on the basis of perturbation theory and the factor

. I 2 in (2.32b) cannot be replaced by unity. Thus a combination of

perturbation theory and physical optics theory cannot be applied to

this problem. Physically, the coefficient IXR12 in (2.32b) accounts

2 -2for the fact that when k<hR> is not much smaller than unity, the

surface irregularities RR that ride on the filtered surface hF could

significantly reduce the contribution of the "specular" scattering

cross section, <a> associated with the filtered surface h. For

backscatter, the perturbation term associated with Bragg scatter

<aPQ>1 (2.25) is much smaller than the term associated with specular

scatter <(IPQ> (2.24) near normal incidence and <Opp> > <aPP> for
0 10

near grazing incidence provided that (2.22) and the radius of curva-

ture criteria are satisfied. However, for the more general case treated

PPin this section a similar relationship between <a >F (2.32b) and

PP<a >R may not exist. Thus, while it is certainly not necessary to

decompose (filter) the rough surface height h into surfaces h and

(2.30) in order to derive the scattering cross sections when the full

wave approach is used, such a decomposition does provide additional

physical insight. The results of the analysis carried out in this

section illustrate how the specular scattering and Bragg scattering com-

ponents of the total scattering cross section begin to blend with each

2 -2other as the value of ko<hi> increases and the composite surface can

no longer be regarded as a perturbed-physical optics (Kirchhoff) surface.

Furthermore, the decomposition (filtering) of the surface height assists

in making the result (2.1) easier to compute.
*',

I%
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It can also be shown that if instead of (2.30) the criteria

for decomposing the composite surface is based only on the character-

istics of the small scale surface height hs, (2.22b) such that

h - h + hR (2.47)

and if the radii of curvature associated with the remaining surface hR

are not large compared to wavelength (such that the physical optics

theory cannot be applied to it) the full wave approach can still be used.

2.5 Concluding Remarks

It is shown that since the full wave theory accounts for both Bragg

scattering as well as specular point scattering in a self-consistent

manner, in order to evaluate the scattering cross sections it is not

necessary to use a combination of perturbation and physical optics theo-

ries. Furthermore, it is shown that the general formulas derived in

Section (2.3) can be applied to surfaces that do not necessarily satisfy

2 -2the perturbation theory restrictions k0 <h> << 1 and/or the physical

optics theory restrictions on the radii of curvature (2.29). For the

general case considered in Section (2.4), in which a perturbed-physical

optics approach cannot be used, it is illustrated how Bragg scattering

and specular point scattering begin to blend with each other. In this

case, decomposition (filtering) not only enhances one's physical insight,

but also facilitates the numerical evaluation of the scattering cross

sections (2.1). These numerical evaluations need to be pursued with

special emphasis on the specification of kd (where spectral splitting

is assumed to occur).
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3.0 COMPUTATIONS OF SCATTERING CROSS SECTIONS FOR COMPOSITE SURFACES

AND THE SPECIFICATION OF THE WAVENUMBER WHERE SPECTRAL SPLITTING

OCCURS

3.1 Background

The scattering cross sections for composite random rough surfacesI are evaluated using the full wave approach. They are compared with

earlier solutions based on a combination of perturbation theory which

accounts for Bragg scattering and physical optics which accounts for

specular point theory. The full wave solutions which account for both

55' Bragg scattering and specular point scattering in a self-consistent

manner are expressed as a weighted sum of two cross sections. The first

is associated with a filtered surface, consisting of the larger scale

spectral components, and the second is associated with the surface

consisting of the smaller scale spectral components. The specification

V.q of the surface wavenumber that separates the surface with the larger

spectral components from the surface with the smaller spectral compon-

ents is dealt with in detail. Since the full wave approach is not

9." restricted by the limitations of perturbation theory, it is possible

to examine the sensitivity of the computed values for the backscatter-.9'

cross sections to large variations in the value of the wavenumber where

spectral splitting is assumed to occur.

3.2 Discussion

In this section, the backscatter cross sections for composite

models of rough surfaces are evaluated using the full wave solutions

to the problem (Bahar and Barrick 1982). The like-polarized backscatter

cross sections for both vertically and horizontally polarized waves as

'1
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well as the cross-polarized backscatter cross sections are evaluated

as functions of the angle of incidence. In order to compare the full

wave results with earlier solutions for the backscatter cross sections,

the full wave solutions are expressed in terms of a weighted sum of

scattering cross sections. The first is associated with a filtered

surface h F consisting of the larger scale spectral components (k < kd).

The second is associated with a surface h R consisting of the smaller

scale spectral components (k > kd) (see Section 2).

In an attempt to draw more definite conclusions regarding the

choice of kd (the wavenumber where spectral splitting is assumed to

occur) between the surfaces hF and hR, the wavenumber kd is varied over

a wide range of values. The wavenumber k d is related to the parameter

- 2 2
B 4k0 <>, where k is the wavenumber for the electromagnetic wave

20
and <2> is the mean square of the surface height h Thus, on applying

a perturbed-physical optics approach to rough surface scattering (Brown

1978, 1980), the wavenumber kd was chosen on the basis of the charac-

teristics of the surface consisting of the small scale spectral compon-

ents. However, in the approaches of Hagfors (1966) and Tyler (1976),

the specification of the wavenumber kd is assumed to be based on the

characteristics of the filtered surface hF. In their approaches, however,

they ignore the effects of the surface hR (consisting of the smaller

spectral components, k > k d) since their results were meant to explain

backscatter from lunar and planetary surfaces at near normal incidence.

It should be pointed out that even if the spectral components of

the filtered surface density satisfy the radii of curvature criteria

(associated with the Kirchhoff approximations of the surface fields),
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they may not necessarily satisfy the condition for deep phase modulation

implicit in the evaluation of the specular point result (Barrick 1970).

In Section (3.3) of this report the principal full wave expressions

for the normalized scattering cross sections are summarized. Since the

parameter B need not be restricted by considerations of perturbation

theory, it is assumed that the filtered surface h satisfied the radii
F

of curvature criteria (associated with the Kirchhoff approximations for

the surface fields) as well as the conditions for deep phase modulation.

In Section (3.4) an extensive set of numerical data is presented

for the backscatter cross sections associated with the like-polarized

and the cross-polarized waves. It is shown that while, as expected, the

cross sections associated with the individual surfaces hF and hR criti-

cally depend on the choice of 8 (and therefore kd), the total back-

scatter cross section remains practically insensitive to B for 8 > 1.0.

However, there are small, though perhaps significant, differences in the

values for the total cross sections where 8 is increased from 0.1 to 1.0.

It should be pointed out that these differences (as B varies from 0.1

to 8 - 1.0) are significantly smaller than those predicted on the basis

of Brown's analysis. The reason why the full wave results for the total

backscatter cross sections merge for values of a >1.0 is related to the

condition for deep phase modulation. Some of the key observations of

Brown, in his contribution to rough surface scattering, (1978), are

summarized in Section (3.4) to emphasize the problems related to the

specification of kd. However, the interested researcher in this field

should familiarize himself with his work as well as the pioneering

% 7e &



56

contributions of Hagfors (1966) and Tyler (1976).

The details given in the illustrative examples of Section (3.4) are
N

presented primarily for tutorial purposes and to vividly establish the

criteria for specifying kd. Thus, the engineer need not consider the

evaluation of the cross section for a > 1.0 or concern himself with the

individual terms that add up to determine the total cross sections.

Nevertheless it does enhance the engineer's physical insight in dealing

with problems of rough surface scattering. For example, the full wave

approach can explain why the frequency dependence of the backscatter

cross sections changes as one changes the angle of incidence or when one

varies the frequency of the electromagnetic wave.

3.3 Formulation of the Problem

In this section the principal expressions for the normalized scat-

tering cross sections per unit area are summarized and the full wave solu-

tions are compared with earlier solutions based on perturbation and

physical optics theories.

The expressions for the normalized scattering cross sections per

unit area (Ishimaru 1978), based on the full wave solutions for the

incoherent scattered radiation fields, are given by (Bahar 1981a)

PQ <sPQexp[ivy(h-h')]> - <DPQP2(n fniIn) 12]<0 > -Wy.aX-ny ) ]2

"exp[iVxxd + iVzd]dX ddZd (3.1)

in which

rd - (x-x')ax + (z-z') z  Xx + z (3.2)

is the radius vector between two points in the reference plane (x,z)
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(see Fig. 3.1). The vector v in the reference coordinate system (x,y,z)

is

-" v k (n-n) v a + v a + v a (3.3)

where k is the free space wavenumber for the electromagnetic wave and0

-i -f
n and n are unit vectors in the direction of the incident and scattered

"ft

wave normals respectively. An exp (iwt) time dependence is assumed

throughout this work. The symbol < > denotes the statistical average

and it can be shown that (Bahar 1981b)

Q-2

. <SP  exp[iv (h-h')]>- < exp[iv (h-h')]y y
y

P(h x hz 2 )P (n nin)dh xdhz > (3.4)

where n is the unit vector normal to the rough surface (see Fig. 3.1).

f(x,y,z) - y - h(x,z) - 0 (3.5a)

Thusa

Vf- IVfI - V - +a- h a )(3.5b)
.Y -h s(Y- a y Z)

in which the components of the gradient of h(x,z)

h X -h/Dx , hz -h/3z (3.5c)

are random variables and p(h xh z) is the distribution function for the

slopes hx and h z . The expression for <aPQ> (3.1) accounts for shadowing

and

_f -il- f-
P ,niJn) - P2 (n ,n in sSnf.o)S(-nion) (3.6)

in which P2 (n fni;) is the probability that a point in the rough surface

is both illuminated and visible given the value of the slopes at the point

(Smith 1967; Sancer 1969) and P2 (f ,n in) is its value at the specular

-9, '?::.¢ -4-:-; y# .-.-$.? .. :% . 4...?$:.i ....i, -. ,.;-. ..: :-..?.i-.-?.-.i: :.



4 58

CL 0

04 0

4.

41

0

* 00 6
CC CL 0

M0

10 cc

10 40

0 4

IU w



59

points where the unit vector n is given by

n n/V (3.7)

ni -n

The arguments of the unit step functions S(-n n) and S(n -n) vanish at

points of the rough surface where the incident and scattered waves are

tangent to the surface. Thus S(-n ns) - I and S(n n s) 1. The charac-

teristic function and the joint characteristic function for the surface

height h are respectively,

X(vy) - <exp(iv yh)> (3.8)

and

X2 ,-v ) - <exp iv y(h-h')> (3.9)

For rough surface heights with Gaussian distributions (assumed in this work)

X(Vy) - exp(-v 2<h 2>/2) (3.10)
y y

in which <h2> a 2 is the mean square surface height. Furthermore,

X2(Vy) - exp[-v2 (<h2> - <h h'>)] (3.11)
y

where<h(x,z)h'(x',z')> is the surface height autocorrelation function. The

coefficients DPQ (Bahar 1981a) depend explicitly upon the polarization of

the incident wave (second superscript Q-V - vertical, Q-H - horizontal)

and the polarization of the scattered wave (first superscript (P-V,H),

the direction of the incident and scattered wave normals n and n re-

spectively, the complex permittivity and permeability of the medium of

propagation c and p respectively and the unit vector n normal to the rough

lPQ

surface. In the above eKpression for <aP >, (3.1), it has been assumed

that the surface height h and slopes (h ,hz) are statistically independentx z

I
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a condition that holds for Gaussian surfaces at each point) and that for

distances Irdi less than the correlation distances 1 (where the surface

height autocorrelation function C(£) - C(o)/e)

n(h h) - (hlh) (3.12)
x z x

If the statistics for the entire rough surface h(x,z) are known, the

total scattering cross sections can be evaluated using the full wave solu-

tion (3.1). However, when a combination of perturbation theory (Rice

1951; Barrick 1970) and physical optics theory (Beckmann 1968) is applied

to the problem of rough surface scattering, a two scale model of the

surface is used and the surface is decomposed into a filtered surface

height (consisting of the large scale spectral components of the surface

height) and a small scale surface height h that is superimposed (rides on)

the large scale filtered surfaces (Wright 1968, Valenzuela 1968; hs

consists of the smaller scale spectral components of the surface height).

To this end it is necessary to specify the wavenumber k at which spectral

splitting is assumed to occur. For instance, Brown (1978) who uses a com-

bination of Burrows' perturbation theory (1967) and physical optics

(Beckmann 1968), bases the specification of kd upon the characteristics of

the small scale structure (k2 ch2> << 1). However, in the works by
0

Hagfors (1966) and Tyler (1976), the specification of k is assumed to be
d

based upon the characteristics of the large scale (filtered) surface h
F

Thus, in order to Justify the application of physical optics theory to the

large scale surface roughness, Tyler (1976) imposes the condition
92 <^2

P(jr12j < r <2) < 1 (3.13)

in which P(-- <r12) is the probability that jr12j (the absolute value

121 12)12
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of the product of the principal radii of curvature of the large scale

surface) is less than r 2, and the critical value for r2 is assumed to be12D 12

k0 -2 (Tyler 1976).

Since the full wave approach accounts for both specular point scatter-

ing as well as Bragg scattering in a self-consistent manner, it is not

necessary to filter (decompose) the rough surface to evaluate the scatter-

ing cross sections. However, filtering the composite surface enhances

one's physical insight as to the validity (or lack thereof), of the

perturbed-physical optics approach to the scattering problem and also

facilitates the numerical evaluation of the cross section. Thus it is

assumed here that the rough surface height h(xz) is decomposed into two

surfaces such that the position vector to a point on the rough surface is

rs = rF(Xh z) + n ER (3.14)

In order to apply the physical optics-specular scattering approximation

to the filtered surface hF (consisting of the larger scale spectral com-

ponents) assume that h satisfies the appropriate radii of curvature cri-

teria (for example (3.13)). In addition, assume that deep phase modulation

occurs. Thus, the distances from the transmitter and receiver to the indi-

vidual specular points (which are random variables) are such that the

contributions from the individual specular points are distributed uniform-

ly in phase from -w to w.. One should also note that no matter how the com-

4posite surface is filtered, the physical optics approach (based on the

Kirchhoff approximations for the surface fields) is not valid if for a
"''-i -f

given n and n specular points do not exist on the rough surface

(Bahar 1981ab). Let hR consist of the remaining part of

the rough surface spectrum (k > kd). Since in this case. kd

.%*.
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is specified by the desired characteristics of the filtered surface h, it

2 -2is not assumed here that ko<h-> is much smaller than unity. Thus per-

turbation theory (Rice 1951; Barrick 1970), cannot be applied to the

remaining part of the surface height hR. For truly random, rough natural

surfaces such as the sea surface, it is assumed that hF and hR are statis-

tically random functions. If in addition, it is assumed that Vh = Vh F

the full wave solution (3.1) can be expressed as a weighted sum of the

individual cross sections for the surfaces hF and hR respectively (Bahar

1981b).

<PQ><P> > + <OPQ>R (3.15)

The first term <a PQ>F can be shown to be given by

<a>F R- 1 R (v-ns <)I Q> , (3.16)

R Rin which x (v.n) x (v) is the characteristic function for the surface

hR and <aPQ > is the specular point scattering cross section for the fil-R R

tered surface hF. The factor X R(v) that multiplies <a PQ> accounts for the

degradation of the specular points contributions due to the superimposed

surface hR (Bahar 1981a). It can be shown that

47k2 JDQ2

< -v j .. .n'j - (3.17)

PQ
The second term <a > is the scattering cross section for the surface

that rides on the filtered surface hF. It can be expressed as follows

(Bahar and Barrick 1982)

<a PQ >R I1 <aPQ>R
m=1 m(3.18)

_-1'm

H.'f
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where

PQ 2 I 2~n n 2 -2 Wi'<a > R 4wk 0 exp (-v- <h m~R o: y Km
m na I

p(hxhz)dhdhz  (3.19)

in which v;, v- and v- are the components of v (3.3) in the local
y z

coordinate system (at each point on the large scale surface) associated

with the unit vectors nl, n2 9 and n3 (see Fig. 3.2). Thus v

in (3.3) is also expressed as (Bahar 1982)

vn+ v-n + v-n
VVx v 1  y2 z 3 (3.20)

where

n1 - (n x az)/Ii x azI , n2 - i, n3 " n1 x n (3.21)

2m
The function W M(v-,v-)/2 is the two dimensional Fourier transform of

m~ ~ z
• (v-,v-) f -

mx z . 1 (<h%>) exp(iv-x + iv-zd)dXdZ

2m (27) 2 J R AXd zddd

- 1 W (v'v 'Wi(u - v-',v- - v-') dv-'dv-'

2 2m- M-1 z )  x z z x z

®1
-. 22-*- W n1 (v;,v-) W (v-,v-) (3.22)

2 2m m1 zXZ

In (3.22) a-d +Zdazj is the distance measured along the large scale

surface and the symbol G) denotes the two dimensional convolution of Wrn-1

with W1. Since Wl(v-,v-)/4 - W(v-,v-)/4, is the two dimensional Fourier
1 x x z

transform of the surface height autocorrelation function <h >, it is

equal to the spectral density for the surface height h R Thus, the first

term in (3.18), <a PQ>R' accounts for first order Bragg scattering.

'- " . ; - - . '- . . - - -' - - -
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However, when 2k -2 is not much smaller than unity the factor

2vj-2 issgifcnl
expvh >) appearing in the expression for <oPQ>R is significantly

smaller than unity for backscatter near normal incidence and approaches

unity for backscatter near grazing incidence. This factor as well as the

coefficient xR (v) in the expression for <a PQ>F (3.16) do not appear in

the expressions for the scattering cross sections based on a perturbed-

physical optics solution. Moreover, the arguments of W(v-,v-) are the

components of v in the local tangent plane and not in the reference plane2<.-2> <Q I<PQ>R

(x,z). Thus for k 0h R ><, <0 P>R <0P> can be regarded as an aver-

age (over the distribution of slopes of the large scale surface) of the

scattered power from patches of slightly rough surfaces that ride the

large scale surface (Wright 1966, 1968; Valenzuela 1968). The scatter-

ing cross section < PQ>RI can be compared with earlier solutions that

are 'Imostly based on physical considerations" on expressing the unit

vector n in terms of the slope angles * and 6 in and perpendicular to the

plane of incidence (Valenzuela 1968; Valenzuela, Laing and Daley 1971;

Bahar 1982b). For k<hR> 4< 1 the expression for <a >R1 is also in

agreement with Brown (1978) (as corrected in Brown 1980), provided that the

mean squares of the large scale slopes are small. This difference arises

primarily because Brown assumes that the surface height autocorrelation

function for the small scale surface is dependent on distances Ird! =

2 2

(xd + z 2) (3.2) in the reference (mean) plane rather than distances

-2 -2
(xd + Zd) measured along the large scale surface as assumed in this work

and implicitly by Valenzuela (1968). Moreover, using the perturbation

MA A
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method (Burrows 1967), the small scale surface height h is measured

normal to the filtered surface hF rather than normal to the reference

plane (y-O) as assumed by Brown (1978).

As the parameter 0- 4k2<F -2te a 4k0 h> increases and the corresponding value

for kd (the wavenumber at which spectral splitting is assumed to occur)

decreases, it is necessary to retain an increasing number of terms in

(3.18). However, since the full wave approach accounts for specular point

scattering as well as Bragg scattering in a self-consistent manner, the

numerical value for the total scattering cross section <aPQ> (3.15)

should not depend on the specific value of kd, provided that the filtered

surface hF satisfies not only the radii of curvature criteria but also the

condition for deep phase modulation assumed in reducing (3.1) to the form

(3.15). This property of the full wave solution is demonstrated in the

next section where illustrative examples are presented.

*3.4 Illustrative Examples

In order to compare the full wave solutions for the scattering cross

*sections (3.15) with earlier solutions appearing in the technical litera-

ture (Brown 1978, 1980), the following specific form for the total surface

height spectrum is selected

()Bk4/(k2+K2)4 k < k

WT(v,V) - S(v-,v-
Tx z - r 2 x z

,0k > k c (3.23)

where W is the spectral notation originally used by Rice (1953) and S is

the notation used by Brown (1978). For the assumed isotropic model of the

ocean surface

F
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I B - 0.0046 (3.24a)

k2 V V + v z ( c m) - 2 , k - 12 (cm) - 1  (3.24b)

K - (335.2 V4 ) (cm1),V - 4.3 (m/S) (3.24c)

in which V, the surface wind speed is given in m/s. The wavelength for

the electromagnetic wave is

A - 2(cm) , (k - 3.1416 (cm)- ) (3.25)
0 0 (.5

The mean square height for the surface hR is given by

2r kc

< f T ;_ (3.26)

o kd

and the mean square slope for the filtered surface h. is

S2rdkd

aFS W < > k3dkdJJ- + in +"K j (3.27)

0 0

In (3.26) and (3.27) it is assumed that kd >> K. The slope distribution

function is assumed to be Gaussian, thus

i P (h h) - I exp ,

FS (3.28)

The directions of the incident and scatter wave normals are (Bahar 1981a)

-i i i i
<*n M sine coso - case' a + sine' sino a

0 1 0 y 0 z

-f f f - f - f f
n = sine 0 cos a y + cosef a + sine sin f ao ',y oy o z

-f -i fi fTh~s for backscatter(n -n)eo =e -e e 0, 0  -W.2 f i0 0 0

n -n i sine a + cose a (3.29a)

L *-s

p
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v -2k n (3.29b)

For perfectly conducting surfaces the relative permittivity and permea-

bility of the medium y < h(x,z) is +l ri ,r 1, thus R.- 1 and

R- H -1 and the backscatter cross section <a PQ>B(3.17) is given by

(Bahar 1981b)

4 [2
sec tane 0

<aPQ> - 6 0 exp 0 0

aFS FS (3.30)

where 6 is the Kronecker delta. The values for W (v-,v-) (3.22), are

PQ m x z

evaluated numerically for m - 2,3. (see Fig. 3.3a and 3.3b). In these

.. plots 0 -f 1.5, and W - WT for k > kd . As k d decreases the number of

significant terms in the expression 
for (3.18) increases. The

individual terms in <a PQ>R (i.e., <a PQ> Rm) can each be integrated numer-

ically and summed to obtain <aPQ>R or the integrands of the individual

terms may be summed and numerically integrated once to give <aPQ>R.

'S While the later procedure is more efficient, for the purpose of the
illustrative examples presented here each individual term <aPQ>Rm (3.19)

is evaluated separately.

To provide a basis for comparing the full wave solutions with~ earlier

results, the normalized backscatter cross sections are also evaluated

using the analytical results recently derived by Brown (1978, 1980). Since

his work is based on Burrows' perturbation theory (1967) and physical

optics (Beckmann 1968), he specifies kd - 2w/Xd (the wavenumber where

4
"

S spectral splitti:g is assumed to occur) on the basis of the characteris-

tics of the small scale structure. Thus Brown concludes that his work

t4
, •
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"...clearly demonstrates the merit of choosing 8 4k0 <h R> as large as

possible. On the other hand, B must be less than one in order to satisfy

the basic criteria for the suitability of the perturbation technique,

i.e., 42<2 << I". Furthermore, on examining his illustrative examples,
• R

he notes that "It would appear from these numerical results that a proper
choice of kd should be based on the criterion 4k2<h> = 0.1"... "Any attempt

to draw a more positive conclusion about the choice of Xd would have to

address the basic question of the dividing lines between two types of

scattering mechanisms," Brown goes on to say, "the results in this paper

are based upon the assumption that the scattering is either physical optics

(or geometric optics for k 0large enough) or small scale diffraction.

Given this assumption, the criterion 4k < = 0.1 seems reasonable." on

the other hand, Brown (1978) notes that "...the concept of a truncated or

filtered spectrum was first hypothesized by Hagfors (1966) in an attempt

to explain lunar scattering data and the observed frequency dependence of

near normal incidence scattering. More recently Tyler (1976) has

attempted to definitize Hagfors' filter theory by basing the spectral

truncation wavenumber on a criterion related to the radius of curvature

of the large scale surface. Both these approaches base the point of

spectral truncation upon a characteristic of the large scale structure,

whereas, according to Brown, "it should be based upon the small scale

structure i.e., 4ko<h> << 1." Finally, Brown points out that his results

"...indicate a smooth transition between the geometric optics and Bragg

scattering regimes which previously have been obtained in an ad hoc

fashion."
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Since the full wave solution, (3.1), accounts for both physical

optics-specular scattering as well as Bragg scattering in a self-

consistent manner, it is used here to explore the basic question of an

apparent dividing line between the two types of scattering mechanisms.

In Figs. 3.4a, 3.4b, and 3.4c, the normalized backscatter cross

section <a PQ> based on Brown's results are presented for 8 - 0.1 (cor-

responding to a 2 = 0.0224 and k - 0.95 (cm) -1) These figuresrepndn t FS it -a d k

PQ 0 PQ P
show <aPQ>= (the total), <a > = LaQ I and <a > [ao Figs.PQ F ad <0R PQ

3.4a and 3.4b for <avv> and <a> differ slightly from the results

presented by Brown (1978) for 0 -< < 700 since he approximates r2
(hpresrae to by PP ,PQ 2
(h h z ) (related to SPQ) by its zero slope approximation rpp, (0,0)

and replaces the shadow function R (P2 in the notation used here) by unity.

These approximations enable Brown to analytically convert the two dimen-

sional integrals into one dimensional integrals which he evaluates numeri-

cally. The main differences are near grazing angles (0 > 800 not shown
0

in Brown's work) where shadowing becomes significant. Moreover, since
-2
7 r (0,0) - 0 he does not provide numerical data for the cross-polarized

VVH
ewbackscatter cross section <a VH> (Fig. 3.4c). In view of Brown's comments

Rregarding the optimal choice of 8 (0.1) and the sensitivity to his numerical

results to changes in B, no other results based on Brown's work are

presented here. In Figs. 3.5a, 3.5b, and 3.5c, the corresponding results

(B - 0.1) based on the full wave solutions (3.15) are presented. In each

of these figures <aPQ> (the total backscatter cross section) <aPQ>F (3.16),

.(the cross section associated with the filtered surfaces) as well as

S<oPQ> Ri and <oPQ>R2 (3.19) (the cross sections associated with h) are

4, v
,4,* + • .. . .
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presented. For 8 - 0.1, <cTRQ> for m > 3 are not shown since they are too
Rm

small to affect the total cross section <aP>. Furthermore, since

jxciyi -0 = 1, exp(-vi <h > 1, and <aQ>~ is small compared

PQto < >R these results are very similar to those based on Brown's work.

In Figs. 3.6a, 3.6b, and 3.6c through 3.9a, 3.9b and 3.9c, the scattering

cross sections based on the full wave solutions are presented for 8 - 0.25,

0.5, 1.0 and 1.5. In Figs. 3.9a, 3.9b, and 3.9c, the term <aPQ>R3 is also

presented since it becomes significant for 8 > 1.5. In Fig. 3.10,<a > is

presented for 8 - 2.0 to demonstrate the importance of the term <a >R3 as

8 increases above the value of B = 1.5.

From the results based on the full wave solutions (Figs. 3.5 through

3.10), one notices that while the individual contributions to the total

backscatter cross sections <aPQ> are very sensitive to the value of 8

(which determines kd) the value for the total cross section varies slightly

as 0 increases from 0.1 to 1.0 and insignificantly for 0 > 1.0. This

latter result is shown explicitly in Figs. 3.11a, 3.11b, and 3.11c, where

only the total backscatter cross sections <a PQ> are plotted for 0-0.1,

0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0. It was not considered

necessary to evaluate <a PQ> for 8 < 0.1 since these results would practic-

ally duplicate those provided by Brown (1978). In Table 3.1, the com-
2

puted values for kd (3.26) and aF2 (3.27) corresponding to values of 8 from

0.1 to 2.0 are listed.

Clearly the above numerical results indicate that from the point of

%%

view of both accuracy (independence of the results on the choice of 8 or

I' * *' **.."..fJ %, .w-,, .
S

? ? f ' P.
-

; 'i " .';. .- '.---. .. .'' (..% . "* "'.." .."* ."" ".. "'-.-,*'."* - .* ."* .
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Table 3.1

k a 2
8 kd FS

0.10 0.950 0.0223

0.25 0.602 0.0202

0.50 0.426 0.0187

0.75 0.348 0.0177

1.00 0.301 0.0171

1.25 0.269 0.0165

1.50 0.246 0.0161

1.75 0.228 0.0158

, 2.00 0.213 0.0155

Relationship between the parameter 0 - 4k < >, the surface
2

wave number kd (3.26) and the mean square slope (3.27)
SFS

,.'~

* ° I '.Pi&. -• .
'  

" - .• ° w.. "• • . . -

€-. ,,i ,: ".,,'' ,:_. . ." "."*.' **.. • ..... . .. . . .. .. . • .. . ,.. ' . " ,., . .,. '.......- ..

.9 ..
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* kd) and computational ease the optimal choice for 8 is 1.0. This cor-

responds to the choice of kd - 0.301 (cm- ) and Ad 20.87 (cm) = 10.440

It should be pointed out that for B - 1.0 not only does <a PQ>R2 begin to

become significant (particularly in the region between 0 - 15 and 0 =

35 , where specular point scattering and Bragg scattering effects begin to

blend), but the factors IxR(. 8 )12 - e 8 and exp(-v<h2 are also sig-

nificantly different from unity. These factors appearing in <oPQ>F and

<OPQ>R respectively and the terms <a PQ>Rm (m > 2) are not present in the

expressions derived by Brown (1978). The contribution that the term

Rmakes to the total backscatter cross section is even more pro-

nounced for POQ since the physical optics approximation for the cross-

polarized backscatter cross section <aPQ> is zero. Moreover, since
• <oPQ> F" 0 for IAQ, use of the two scale model of the composite surface to

compute the cross-polarized cross sections needs to be investigated fur-

- ther (see Section 4).

The small though perhaps significant differences in the full wave

values for <aPQ> (the total backscatter cross sections), as 8 increases

from 0.1 to 1.0 are much smaller than those obtained from Brown's results.

The reason why <a PQ> is sensitive to variations in 8 for 8 < 1.0 is that

on deriving the approximate physical optics contribution <a P> (3.16)

(associated with the filtered surface hF) from the full wave solution (3.1),
it was assumed implicitly in deriving <aPQ (3.30) that the radii of curva-

ture associated with the surface h satisfied the Kirchhoff approximations

*for the surface field and also that the individual specular points on the

filtered rough surface h. met the conditions for deep phase modulation;

namely, that distances from the specular points on the surface hF to the

, -. - " . " " " . " - . , - " - ,..' . . ' . ' . - - . '-
"" -t t *-"- ~i '' ' ;,.€ ' ? ,"• " " " -" - "' .'' .'.' .V.-
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N

receiver and transmitter were such that their contributions were dis-

tributed uniformly in phase between -w and w. For a < 1.0 the neighbor-

ing specular points on hF begin to merge and contribute more strongly to

the backscatter cross section than when deep phase modulation applies.

For backscatter <a VH> - <aHV>,and therefore the numerical data for

<a V> is not presented. However, <a > is significantly different from

<aHH> as 0 - 90. This polarization dependence of <aPP> is missing in

the physical optics results.

3.5 Concluding Remarks

In this paper, extensive numerical results for the full wave back-

scatter cross sections <aPQ> (P,Q-V - vertical or H - horizontal) are

presented. For convenience,and in order to compare the full wave results

with earlier solutions to the scattering cross sections, the full wave

solutions are expressed in terms of a weighted sum of a scattering cross

section <a PQ>F associated with the filtered surface h. (consisting of

the larger scale spectral components) and a remainder term <aPQ>R, asso-

ciated with the surface RR (consisting of the smaller scale spectral

components).

In an attempt to draw more definite conclusions about the choice of

kd (the wavenumber where spectral splitting between the surfaces hF and

•"R is assumed to occur), the parameter 8 4 k <hE> (that is related to kd)

is varied over a very wide range of values (0.1 < 8 < 2.0). It was not

necessary to consider values of 8 < 0.1, since these results would practi-

cally duplicate those already provided by Brown (1978). For a > 2.0 the

numerical evaluations become tedious and of no particular value. It is

P.

.' % .*' * *. , . ."o -, % .- -. ' •.. -. -. . ... ' ~. ,. p=q -~ -- P .-
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shown that while there were small though significant variations in the

values of <aPQ> as 8 increased from 8- 0.1 to 8 - 1.0 the results merged

for 8 > 1.0. Thus, from the point of view of computational ease and

accuracy, the choice 8 - 1.0 corresponding to Ad - 10.44X is optimal. It

should be noted that in order to derive the physical optics - (specular

point) contribution to the scattering cross section (associated with the

filtered surface h ) from the full wave solution, it was necessary to

assume that the radii of curvature criteria (imposed by the Kirchhoff

approximations for the surface fields), as well as the condition for deep

phase modulation were satisfied. However, the parameter 8 is not restric-

ted by the characteristics of the small scale surface. Thus 8 could be

assumed to be much larger than 0.1 in gross violation of the standard

perturbation criteria without affecting the results for the total scatter-

ing cross section. It is interesting to note that for 8 - 2.0 (Fig. 3.7)

<OPQ>F is significantly smaller than <aPQ>R for all values of 0 including

near normal incidence. Nevertheless, the computed results for <aPQ>

with 8 - 2.0 (the total backscatter cross sections) are in agreement with

the corresponding results for 8 - 1.0 where <aPQ>F is the dominant term

near normal incidence. This is because the full wave approach permits

the blending of specular point scattering (from h. consisting of the

larger scale spectral components of the surface height) with Bragg scat-

tering (from hR consisting of the smaller scale spectral components of the

surface height). Thus, one cannot arbitrarily neglect the contribution

PQto <aP > associated with the surface RR' even at near normal incidence.

Furthermore, since the physical optics approximation for the cross-

4' polarized backscatter cross section is zero, it is necessary to further

-%/4VV.S. %-,. .- %,,% % -
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investigate the use of the two scale model of the rough surface

to compute <aPQ> NQ.

Although numerical results are presented in this paper only for

backscatter, the full wave solution (3.1) is suitable for the evaluation

of scattering in arbitrary directions. Furthermore, the medium

y < h(xz) need not be perfectly conducting and the effects of finite

conductivity can be considered. The full wave approach also accounts for

the scattering of the lateral and surface waves (Bahar 1980a,b) that are

excited over non-perfectly conducting surfaces. The full wave approach

can be applied to scattering at low radio wave frequencies as well as

at optical frequencies.

"Ii
A,.

dpC
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4.0 Computations of Rough Surface Cross Sections That Do Not Involve

Spectral Splitting

4.1 Background

In Sections 2 and 3 the full wave solutions for the scattering

cross sections were applied to two-scale models of composite rough

surfaces. The main purpose of the work reported in these sections

was to compare the full wave solutions for the like and cross

polarized scattering cross sections with the solutions based on the

use of a perturbed-physical optics approach. The question of the

specification of kd, the wavenumber where surface height spectral

splitting is assumed to occur was also investigated in detail. It

was shown that the full wave solution for the scattering cross

sections can be expressed as a weighted sum of two cross sections. The

first was associated with the filtered surface consisting of the

large scale spectral components and the second was associated with the

surface consisting of the small scale spectral components that ride

on the large scale surface. Provided that the large scale surface

satisfied the radii of curvature criteria (associated with the

Kirchhoff approximations of the surface fields) and the condition

for deep phase modulation, it was shown that the full wave solutions

were insensitive to the variations in the specified value of kd.

Since the full wave approach accounts for specular point
4

*scattering and Bragg scattering in a unified self consistent manner,p1 it is not necessary to spectrally decompose the composite rough

ii
%t . t * . .4 *. .* * . . . .

-.. *;.'
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surfaces into two surfaces with different roughness scales. Thus

* . in this section the scattering cross sections for all angles of

incidence are calculated using the undecomposed form of the full

wave solution.

4.2 Discussion

On applying the full wave approach in Sections 2 and 3 to

evaluate the like and cross polarized scattering cross sections for

two scale models of composite rough surfaces, several assumptions

Vwere made to facilitate the computations. The first assumption was

S!"that the large and small scale surfaces were statistically inde-

pendent (Brown 1978). It would seem reasonable to make such an

assumption if the two surfaces are results of independent processes.

This would be the case,for example, if the small scale roughness

is due to erosion, while the large scale roughness is due to geo-

physical forces that result in hills and valleys, or as in the case

of the sea, where the capillary waves are dependent on surface ten-

sion while the large scale rough surface is generated by gravity

waves. For the general case, however, one cannot assume statistical

independence of the large and small scale surfaces.

The second simplifying assumption that was made was that the

mean square slope os for the total surface was approximately equals 2

V to the mean square slope aFS for the filtered large scale surface.

The third assumption was that if the mean square height of the

total rough surface is large compared to wavelength, the surface

Pq.
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height characteristic function for the total surface is negligibly

small. The effects of these simplifying assumptions on the com-

*" puted results for the cross sections are examined.

The physical optics approximation for the cross polarized back-

* scatter cross section is zero. As a result, the cross polarized

backscatter cross section for the filtered surface is set equal

to zero when the two scale model is used. However, for backscatter

only,the specular points on the rough surface do not depolarize

the incident wave. Therefore, the justification for use of the

two-scale model to evaluate the cross polarized scattering cross

sections of composite rough surfaces is also examined in this sec-

tion of the report.

4.3 Application of the Full Wave Solution Without Surface

Decomposition

The starting point for this analysis is equation (3.1) for

the like and cross polarized scattering cross sections of the

rough surface y - h(x,z)

k Q_f_______ 2]
<opQ> .2 <sPQexp[iv (h-h')]>- DPI2(n 2

:?r y . > X(vy

n *a J

.expfliv x + iv z zd]dXddZ d  (4.1)

in which

-" (x-x')a + (z-z')a - x d + z (4.2)
d y d dx d az(42

is the radius vector between two points on the reference plane (xz)
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The vector v is
,. -k(nf-ni). va v +a

ox x y y z z (4.3)

where k is the free space wavenumber for the electromasnetic wave0

-i " -f

and n and n are unit vectors in the directions of the incident

. and scattered wave normals respectively. An exp(iwt) time depen-

dence is assumed in this work. The symbol <>denotes the statistical

average and

<SPQexp[ivy (h-h')]> - ( 2 ( 1fi);j)P(h hz )dhxdhz
y n'ay

X2 (VyVy) PQ(nf,n )X2 (vy -v y) (4.4)

in which

n(hx ,hz) is the unit vector normal to the rough surface

f(x,y,z) - y-h (x,z) - 0 (4.5)

S.~ Thus

Vf - njVfj - V(y-h(x,z)) - (-h xa x+ay -h az) (4.6)

in which the components of the gradient of h (x,z)

hx - ah/ax , hz U DhP z (4.7)

are random variables and p(hx ,hz) is the probability density func-~a-

tion for the slopes hx and hz . The expression for the scattering

cross sections <o PQ> (4.1) accounts for shadowing and

-fi f -- i (48
P2 (n 'I;j) P 2 (nf,i ,s)S(n-f.)S(n ) (4.8)

in which P2(nf,ni1 n) is the probability that a point on the rough

...-
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surface is both illuminated and visible given the value of the

slopes at the point (Smith 1967, Sancer 1968) and P2(nf,n'Ins) is

its value at the specular points where the unit vector n is given

by
-,,, -f-i

n -n - v/v (4.9)
In-n I 49

The arguments of the unit step functions S(-n in) and S(n .n)

vanish at points of the rough surface where the incident and

scattered waves are tangent to the rough surface. Thus

)- 1 and S(;nn ) 1.

-: The characteristic and joint characteristic functions for the sur-

S:. face height h are respectively (Beckmann and Spizzichino 1963)

X(v1 ) 1 <exp(ivyh)> (4.10)

and

2 2(Vy-vY) -<exp[iv (h-h')]> (4.11)
y y

It is assumed in this work that the probability density function

for the surface height is jointly Gaussian. Thus

X(Vy) - exp(-v2 <h2>) (4.12)y y
and

2 2 2
X2 (v"y-vy exp(-v <h > - v <hh'>) (4.13).. 2(y-V)y Y

where <h2> is the mean square height and <hh'> is the surface

height autocorrelation function. The coefficients DPQ depend expli-

citly upon the polarization of the incident wave (second

,S.

9..' - " , o , . . , . - ° , - ° , . - , . .

.. .",' ;v5.' :. , .. .. .. , . ., ' ... , . .. . . , . ". . .'%',T



106

superscript Q-V - vertical, Q-H - horizontal) and the polarization

of the scattered wave (first superscript; P-VH) the direction of
~-i -f

the incident and scattered wave normals n and n respectively,

the unit vector n normal to the rough surface and the complex per-

meability and permittivity of the medium of propagation

respectively (Bahar 1981a, see Section 1). On deriving (4.4) it

is assumed that the rough surface is Gaussian and stationary, thus

the surface height h and slopes (h x,h z ) are statistically inde-

*. pendent (Brown 1978, Longuet-Higgins 1957). It is also assumed

that for distances _rdI less than the surface height correlation

distance, k ,n(h xh) n'(h x'h z'). It has been shown that if

the principal contributions to the scattered fields come from

specular points on the rough surface (n - ns ), (4.1) reduces to the

- physical optics solution for the scattering cross section. If,

however, the roughness scale of the surface is small compared to the

wavelength (k <h 2><<1) and the surface slopes h and h are very
0 x Z

small, (4.1) reduces to the perturbation solution for the scatter-

ing cross sections (Rice 1951). Thus,in this case Bragg scatter-

ing is accounted for and the backscatter cross sections for graz-

ing angles are strongly dependent on polarization. In Section 2

a two scale model is adopted to determine the corresponding full

wave solution for the scattering cross sections. To facilitate

the application of the two-scale model it is assumed that the

small scale surface hR and the large scale filtered surface hF

K F
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are statistically independent (Valenzuela 1968; Wright 1968; Brown

1978). This assumption is reasonable if the surfaces h. and hs

are results of independent processes (Brown 1978) as for example,

* . when the small scale roughness is due to erosion while the large

scale roughness is due to geophysical forces that result in hills

and valleys or as in the case of the sea, where the capillary

waves are dependent on surface tension while the large scale sur-

'" face is generated by gravity waves. In general, however, it

cannot be assumed that the large and small scale roughness of the

surface are statistically independent. In the general case, If the

two scale model is used to analyze the problem it would be neces-

sary to know the large and small scale surface height joint proba-

bility density function for two adjacent points on the rough sur-

face to determine X2 (4.11) alone.

Since the full wave solutions account for both Bragg scatter

and specular point scatter in a unified, self consistent manner,

in this section solutions for (4.1) are de'eloped without adopting

a two-scale model of the rough surface.

In Sections 2 and 3 it has been noted that the physical optics

approximation for the cross polarized backscatter cross section is

zero (<aPQ>F - 0 for P 0 Q).However, even the large scale fil-

,a- tered surface will depolarize the backscattered field at non-

specular points on the surface. Therefore the present analysis

should shed more light on the evaluation of the like and cross

a.+
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polarized backscatter cross sections and the suitability of the

two scale model even if it can be assumed that the large and small

scale surfaces are statistically independent.

Assuming that k2<h2> << 1 and IX12 << 1, the scattering cross
0

section (4.1) can be expressed as follows:

<PQ> =PQ(f i)fE 2 -vy)- Ix(Vy)1 2

T-. 'X y y y

- "exp[iVxxd + ivzZd JdXddzd

a. 1 ~PQ(;fo-i) fi
n q (nf,niR) (4.!4)

. in which IPQ is defined by (4.4) and Q y the two dimensional

Fourier transform of (X2 - ×I12) depends on the surface height

correlation coefficient R

R -= <hh'>/<h2> (4.15)
.%-

Using the notation of Rice (1951), the surface height spectral

" ' density function W (v ,Vz) is related to the two dimensional Fourier

transform of the surface height autocorrelation function.

W(v x'v) "1f2 hh'> expfivxXd + ivzZd]dxddzd (4.16a)

and

<hh'> " " Z exp [-ivXd - iv z dv dv (4.16b)
.4 .zd x z

Thus assuming that the rough surface is Gaussian and stationary, to

compute the scattering cross sections (4.14) it is necessary to

a.." prescribe the two dimensional slope probability density function

p(h x,hz) (4.4) and the surface height autocorrelation function or

"a" ' : ' . ' . . . . . . , . . . ., " " . ' . .' ' . . .' . . . . ' ' '. .'.'- .
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its Fourier transform (the surface height spectral density function).

* Since it is assumed in this work that the surface is isotropic,

<hhl> depends only on the distance rd- rj between the two points

(x,h,z) and(x',h',z') on the rough surface. Thus

<hhl>W= 27) v v d
fZ 4 0 (vzrd vxzdXZ (4.17)

and 2W 
vx

<h> 2 rf 4  v zdv X (4.18)

in which J is the Bessel function of order zero and
0

2 2 2 (.9
v V + v (.9
xz x z

Since

J" 1(O) Id 2J (v r )/drd 2 -v 2/2 (4.20)
0 0 xz dd rdO xz

R"(0) - a /2<h 2> M -.0 /<h 2> - -2 /<h 2> (4.21)
a X z

where
2 fW(v z)3

a M f 47 v vdv (4.22)

s1 2 2 Z x

is the total mean square slope while a 2 andl a are the mean square

slopes in the x and z directions. Thus for small values of r d the

correlation coefficient is given by (Beckmann and Spizzichino 1963,

5% Brown 1978)

R(rd) 1 -r~/. =1 A- 2 r 2/2<h 2> (4.23)

where Z. is the correlation distance.
C
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4.4 Illustrative Examples
F-1I

For the following illustrative examples the following special

form of the surface height spectral density function is chosen

(Brown 1978) 4 2 24

W(vv) = ()S(v ,V = c

0 k > k (4.24)
c

where W is the spectral density function defined by Rice (1951)

and S is the corresponding quantity used by Brown (1978). For the

above isotropic model of the ocean surface

B - 0.0046 (4.25a)
k2 2 v2 -2.5b

k - v + v (cm) , kc = 12 (cm) -1(4.25b)x z
4- -K (335.2V (cm) , V - 4.3 (m/s) (4.25c)

In (4.25c) V is the surface wind speed. The wavelength for the

electromagnetic wave is

- 2 (cm) , (k ° W 3.1416 (cm)- 1) (4.26)

Substituting (2.24) into equation (4.18) for the mean square height

of the rough surface yields

2 K 4
,2 B 1 1 K 2 +

2L 3 K k C cK (k +K2 ) 2  3(k 2 -K 2 )3 (4.27)

*-.j Bk6

- C6 ~ 2 22 3

Thus if the spectral cut-off point k (Brown 1978) is much larger

than K (as for the illustrative example (4.25))

':4.c
2  B<h2> 6K2  (4.28)

00, 2

jV
1°
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The surface height autocorrelation function <hh'> (4.17) can be

expressed in closed form for kc Thus the surface height

correlation coefficient R(rd) (4.15) is given by (Miller et al 1972)

R(rd 2 (Krd)K (ird) (Krd) (4.29)
R~d ) - 1+ (,crd) ((cdK6rd)-

in which K and K are the modified Bessel functions of the second

kind and of order zero and one respectively. Since k >> K and k > kc c 0

the above closed form expression is used for R in this illustrative

example. The total mean square slope of the rough surface is

obtained on substituting (4.24) into (4.22).

2 c 11 3 K 3

-B k 2+ K 2 224 6 102 B zn - + I +_ - -

K 2 12 2 k2-2 4 (k2K2)2 6 (k2+c2)3• o C

k 2 K2 k2 (6K2+15K2k2 + 11k 4 )
SB In .+,c c + c (4.30)

112(K2 + k2 "  jc)

Thus for k >> c

2 1 B c 2 2
c12 - (4.31)

For typical sea surfaces the relative complex dielectric coefficient

at 1.5 0Hz is given by (Stogryn 1971)

C a 42 - 139r

The slope probability density function p(hx hz) is assumed to be

Gaussian, thus 2

p(h .,h ) e x z

.. ----.- ex.'2

. z h * *sWaa
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In Fig. 4.1 the like polarized backcatter cross se o > is

i
plotted as a function of the angle of incidence 8° using the expres-

sion derived in Section (4.3). These results are compared with the

two scale full wave results (Sections 2 and 3) based on the choice

of kd (the wavenumber where spectral splitting occurs) correspond-

ing to 8 1. (see Section 2 equations (2.32a), (2.32b) and (2.32c)).

Both results yield the same general dependence of <a W > on the

angle of incidence. The small difference in level is primarily due

to the fact that in (4.3) the mean square slope a2 of the total

(unfiltered) surface is used,(4.31), while in (2.32) the mean square2
slope aFS for the filtered surface hF is used (3.27). It should be

" noted that in deriving the expressions for the scattering cross

sections based on the two-scale model (2.32), it was assumed that

2 2
aFS a . Thus the results based on (4.3) are more accurate.

Furthermore, on deriving (2.32), using the two-scale model, the

quantity X(v y) (4.12) is assumed to be negligible compared to

2 v y X(Vy,-V) (4.13) for rd <9tc Since 4ko <h 2> - 3468 for this illus-

trative example, the resulting approximation is very good except

very near grazing angles. In Figure 4.2 the corresponding results

are given for the horizontally polarized backscatter cross sections

a. HE
<a >. It is interesting to note that the full wave solution (4.3)

yields the proper polarization dependence of the scattering cross

sections for all angles of incidence without use of a two scale

model since it accounts for specular point and Bragg scattering in a

fe

m%,,,
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5."

unified,self consistent manner. In Figure 4.3 the cross polarized

backscatter cross sections <aVH> M <aHV> are plotted as functions

of the angle of incidence. Here too,both the solutions based on

* the two scale model as well as the solution derived in this sec-
.

tion are presented. Unlike the solutions for the like polarized

backscatter cross sections <a PP> (P-V,H), the solutions for the

cross polarized backscatter cross sections differ significantly,

especially near normal incidence where the difference in level is

about 15db. This very significant difference is due to the fact

that the physical optics approximations for the cross polarized

backscatter cross section is zero (Brown 1978, see Section 2).

For backscatter the surface at the specular points is normal to the

incident wave. At these stationary phase points no depolarization

occurs. However, since depolarization occurs at the non specular

points of the filtered surface, the physical optics approximations

for the cross polarized backscatter cross section is not valid.

It is interesting to note that for the two scale model at normal

incidence

<OPP>/<aPQ> = 47db (P#Q)
i.

However, using the full wave solution (4.3)

" <oPP>/<aPQ> = 31db (POQ)

The latter results are significantly more in line with published

experimental results*(Long 1975).

*See also NRL report on "Airborne Radar Backscatter Study at four
frequencies", NRL Prob ROZ-37, SER:8560, August 1966, by J.C.Daley

.5
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4.5 Concluding Remarks

It is shown in this section that two-scale models of rough surfaces

can be adopted to obtain solutions for the like polarized backscatter

cross sections that are in reasonably good agreement with the full wave

solutions derived in this section. However, the two-scale model cannot

be used to evaluate the cross polarized backscatter cross sections. The

significant differences between the solutions derived in this section

and those based on the two scale models (Section 2 and 3) are primarily

due to the fact that the physical optics approximation for the cross

polarized backscatter cross section (associated with the large scale

filtered surface) is zero. For backscatter, the specular points lie

on portions of the rough surfaces that are perpendicular to the incident

wave normal n (n - n - -n ). At these specular points, the back-

scattered waves are not depolarized. However at non-specular poiUts oL.

the rough surface, the backscattered waves are depolarized (Bahar 1981b).

.Thus it is important to note that even if a surface satisffes the radii

of curvature criteria (associated with the Kirchhoff approximations

p. for the surface fields), the physical optics approximations for the

scattered fields may not be valid unless for the given incident and

scatter angles specular points exist on the surface and

significant contributions to the scattered fields come from these

stationary phase-specular-points of the surface. This explains why the

physical optics approximations for the like polarized backscattered

cross sections are not suitable for grazing angles even if the surface

meets the radii of curvature criteria associated with the Kirchhoff

approximations.

4
4
a ' , • f - ". ". - . - ". - " . ". - . . . - .'-.'-'-.'- . .'-.
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There are additional important reasons for preferring to use the

,- analysis developed in this section over those that are based on two-
4".

- scale models of rough surfaces. Firstly, if the two-scale model is

used, it is necessary to assume that the large and small scale surfaces

are statistically independent (Brown 1978). Secondly, even if the

assumption of statistical independence is acceptable, when the two-scale

$ model is used, it is still necessary to judiciously specify kd (where

spectral splitting is assumed to occur). These problems do not arise

when the unified full wave formulation is used to evaluate the scatter-

ing cross sections.

While the preliminary results reported in this section are very

isignificant in that they explain why the earlier solutions based on

two-scale models of composite rough surfaces cannot be used to derive

the cross polarized backscatter cross sections, more work needs to be

done to apply the full wave solutions to more general (non-Gaussian,

F anisotropic) models of rough surfaces.

1%

5%

4
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5.0 Concluding Remarks - Sumnary of Research During the Next Six

Months - Proposed Future Investigations.

• .During the past two years the following principal contributions

have been made with regard to the application of the full wave approach

to rough surface scattering.

(a) The stationary phase approximation of the full wave solu-

tion is precisely equal to the physical optics solution for the

scattered fields. Thus the full wave solution reduces to the physical

optics solution when the expression for the local normal to the rough

surface is replaced by its value at the stationary phase (specular)

points on the surface. The questions surrounding the different exist-

ing forms of the physical optics solutions and the associated "edge

term" have also been resolved.

(b) The full wave solution reduces to the geometrical optics

approximations when the surface integrals are evaluated analytically

using the steepest descent method.

(c) The small scale surface roughness and small slope approx-

imation of the full wave solution is precisely equal to the perturba-

- tion solution for rough surface scattering. Thus the full wave solu-

tion reduces to the perturbation solution when the expression for the

local normal to the rough surface is replaced by the normal to the

reference plane.

(d) Apparent discrepancies between the physical optics and per-

turbation theories have been resolved. Both theories are sound if

they are strictly applied to surfaces that satisfy the respective

assumed restrictions. Physical optics is applicable if the principal

..1,*'' -" -", . . - - , ",, , .,.. - .. • . . - . . - - - ., .. ,..., .
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contributions to the scattered fields come from specular (station-

ary phase) points on the rough surface. Thus in order to apply

the physical optics approach to rough surface scattering it is not

sufficient to satisfy the radii of curvature criteria associated

with the Kirchhoff approximations for the surface fields.

(e) The full wave approach provides the proper limiting forms

for the far fields scattered at near grazing angles. It is shown

that as the incident and scattered fields approach grazing angles

the plane or spherical wave approximations for the far field are not

suitable. In this case on evaluating the integrals for the far fields

(in the wavenumber space) it is necessary to account for the fact

V that for grazing incident and scatter angles, poles are located in

the vicinity of the saddle points. Thus it is shown that for grazing

angles the range dependence of the fields is given by the error func-

tion complement and the full wave solutions exhibit the proper transi-

tion in the neighborhood of the shadow region.

(f) The full wave approach was applied to two-scale models of

rough surfaces and compared with earlier solutions based on the composite,

two-scale description of rough surfaces. The full wave solutions are

expressed as a weighted sum of two cross sections, the first associated

with the filtered surface consisting of the large scale spectral com-
."

ponents of the rough surface and the second associated with the surface

consisting of the small scale spectral components. Thus both specular

and Bragg scattering are accounted for. The weighting function multi-

plying the physical optics cross section associated with the filtered

surface accounts for the degradation of the cross section in the

v
L'
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specular direction due to the presence of the small scale surface

that rides on the filtered surface. It is shown that if the

specification of the wavenumber kd (where spectral splitting is

assumed to occur) can be based solely on the characteristics of

the small scale surface and if the mean square slopes of the rough

surface are very small, the full wave solution is in agreement with

solutions based on a perturbed physical optics approach (Brown, 1978)

or are based solely on physical considerstions (Wright, 1968;

Valenzuela, 1968). If the mean square slopes are not very small,

Valenzuela's solution is not in agreement with Brown's solution.

It is shown through the use of the full wave approach, that the

difference is due to the fact that in Brown's work the correlation

distance for the small scale surface is measured in the reference plane

rather than along the large scale surface as in Valenzuela's work.

Furthermore, in Brown's work the small scale surface height is

measured perpendicular to the reference plane rather than normal

to the filtered, large scale surface. This is contrary to Burrows'

perturbation theory upon which Brown's solution is based.

(g) The controversy between Brown on the one hand and Hagfors

and Tyler on the other regarding the specification of the wavenumber

kd where spectral splitting is assumed to occur is also resolved

through the use of the full wave approach. As noted above, Brown

states that the specification of kd must be based solely on the

characteristics of the small scale surface while Hagfors and Tyler

specify kd on the basis of the characteristics of the large scaleid
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surface. Since the full wave approach accounts for specular point

and Bragg scattering in a uniform self consistent manner, kd may

be specified arbitrarily. Provided that the filtered large scale

surface satisfies both the radii of curvature criterion as well as

the condition for deep phase modulation, the scattering cross sections

based on the full wave approach are shown to be insensitive to the

specific choice of kd. It is shown that if one uses the two-scale

model rough surfaces it is judicious to specify kd such that

48 2 <h 2> _ 1. However since the physical optics approximation

for the cross polarized backscattered cross sections are zero, the

two-scale model can only be used to evaluate the like polarized back-

scattered cross sections.

(h) A unified full wave approach has been developed to obtain

the scattering cross sections. Since this unified approach does

not adopt a two-scale model of the rough surface, it does not

artificially separate specular point scattering from Bragg scattering.

rurthermore, using this uniform approach the question surrounding the

specification of the wavenumber k d does not arise nor is it necessary

to assume that the large and small scale surfaces are statistically

independent. It is shown using this approach that the two-scale model

may be adopted to evaluate the like polarized cross sections, but that

,. it should not be used to evaluate the cross polarized backscatter

cross sections. The physical optics cross section associated with

the filtered surface vanishes for backscatter because the specular

points are located on regions of the surface that are perpendicular

. V
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to the incident wave. Thus the backscattered fields are not

depolarized from specular points. For backscatter, depolarization

-. is due to scattering from non-specular points. Therefore, as shown

. through the use of the full wave approach, the backscattered fields

are depolarized even by the large scale filtered surface.

"-X During the next six months (the final term of the current con-

tract) the following phases of our research will be developed further:

(a) Extension of the preliminary investigation using the unified full

wave approach (see Section 4).

(b) Investigation of the dependence of the scattering cross section

upon the complex permittivity characterizing the rough surfaces.

(c) Research reported in the Interim Technical Report on "Scattering

Cross Sections for Composite Models of Non-Gaussian Rough Surfaces for

Which Decorrelation Implies Statistical Independence" revised and re-

submitted for publication in scientific/technical journals.

(d) Computer programs updated to reflect recent advances in the

analytical-numerical work. A detailed listing of the computer programs

will be presented in the final report. The documentation will also

include flow charts and relevant comments for the convenience of the

* .user.

'/ It is proposed that the following topics be considered for

future investigation as an extension of the current contract:

(a) Scattering and depolarization due to rough surfaces covered by

vegetation

(b) Scattering due to variations in the complex permittivity, C(r),

that characterizes the rough surface (mixed path propagation using

the full wave approach)
*' A
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. (d) The dependence of the scattering cross sections on different

rough surface height spectral density functions

"- (e) Extension of the research on scattering by non-Gaussian rough

- surfaces

(f) Application of the full wave approach to anisotropic rough

surfaces.

The extension of the current research could be conducted over

a 30-month period at approximately the current level of support. The

principal investigator will consider additional applications that are

of interest to the contractor.

4.'

C°. .'

C'.
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